

Bedienungsanleitung Software SPECTRO3-MSM-ANA-Scope V3.0

(PC Software für Microsoft® Windows® 7, 8, 10)

für Farbsensoren der SPECTRO-3-MSM-ANA Serie mit interner Temperaturkompensation und Weißlichtabgleich

Die vorliegende Bedienungsanleitung dient zur Installation der PC-Software für den SPECTRO-3-MSM-ANA Farbsensor. Zur Unterstützung der Inbetriebnahme des Farbsensors werden in dieser Bedienungsanleitung die einzelnen Funktionselemente der graphischen Windows® Benutzeroberfläche erklärt.

Die Signalerfassung mit dem SPECTRO-3-MSM-ANA Farbsensor ist sehr flexibel. Der Sensor kann z.B. im Wechsellicht Modus (AC Mode) betrieben werden. Hier ist der Sensor unabhängig gegen Fremdlicht. Auch ein Gleichlichtbetrieb (DC Mode) kann eingestellt werden. Hier ist der Sensor extrem schnell. Die stufenlose Einstellmöglichkeit der integrierten Lichtquelle sowie eine selektierbare Verstärkung des Empfängersignals und eine INTEGRAL Funktion ermöglichen eine Einstellung des Sensors auf nahezu jede Oberfläche oder jeden "Selbstleuchter".

Ist die integrierte Beleuchtung des SPECTRO-3-MSM-ANA Farbsensors aktiviert, detektiert der Sensor die am Messobjekt diffus zurückreflektierte Strahlung. Als Lichtquelle werden am SPECTRO-3-MSM-ANA Farbsensor LEDs (bei den -VISUV Typen zusätzlich UV-LEDs) mit einstellbarer Sendeleistung eingesetzt. Als Empfänger wird ein integrierter 3-fach-Empfänger für den Rot-, Grün- und Blau-Anteil des vom Messobjekt zurückreflektierten Lichtes, oder des vom "Selbstleuchter" emittierten Lichts, verwendet.

Dem SPECTRO-3-MSM-ANA Farbsensor können bis zu 3 Farben "angelernt" werden. Für jede angelernte Farbe können Toleranzen vergeben werden. Die Auswertung der eingelernten Farben erfolgt entweder nach dem Modus "FIRST HIT" oder "BEST HIT". Dabei wird bei "FIRST HIT" der erste Treffer in der Lerntabelle ausgegeben und bei "BEST HIT" der beste Treffer der Lerntabelle. Die Darstellung der Rohdaten erfolgt mit einer 12 Bit Auflösung.

Die Farberkennung arbeitet entweder kontinuierlich oder sie wird durch ein externes SPS-Trigger-Signal gestartet. Die jeweils erkannte Farbe liegt entweder als Binärcode an den 2 Digitalausgängen an oder kann direkt auf die Ausgänge ausgegeben werden, wenn nur bis zu 2 Farben erkannt werden sollen.

Neben den 2 Digitalausgängen stehen auch 3 Analogausgänge zur Verfügung. Wahlweise werden entweder die Rot-, Grün-, Blau-Anteile oder die errechneten Farbkoordinaten von 0...+10V oder 4...20mA ausgegeben.

Über den Eingang IN0 (grüne Litze am Kabel cab-las8/SPS) können dem Farbsensor bis zu 3 Farben gelernt werden. Dazu muss der entsprechende Softwareparameter eingestellt werden.

Über die RS232-Schnittstelle können Parameter und Messwerte zwischen PC und dem SPECTRO-3-MSM-ANA Farbsensor ausgetauscht werden. Sämtliche Parameter zur Farberkennung können über die serielle Schnittstelle RS232 im nichtflüchtigen EEPROM des SPECTRO-3-MSM-ANA Farbsensors gespeichert werden. Nach erfolgter Parametrisierung arbeitet der Farbsensor im STAND-ALONE Betrieb mit den aktuellen Parametern ohne PC weiter.

Sollte ein Firmwareupdate erforderlich sein, kann dieses sehr einfach über RS232 auch im eingebauten Zustand des Sensorsystems durchgeführt werden (→ siehe Anhang "Firmwareupdate über Software Firmware Loader").

Die Sensoren der SPECTRO-3-MSM-ANA Serie können kalibriert werden. Der Abgleich kann dabei auf beliebige Oberfläche erfolgen, von denen die Farbkoordinaten bekannt sind. Alternativ dazu ist eine ColorChecker™ Tabelle erhältlich. Diese verfügt über 24 Farbfelder nach der CIE-NORM mit denen die Kalibrierung durchgeführt werden kann

Außerdem besteht die Möglichkeit über den Eingang INO einen Weißlichtabgleich durchzuführen.

0. Inhalt

		Seite				
1.	Installation der SPECTRO3-MSM-ANA-Scope Software					
2.	Bedienung der SPECTRO3-MSM-ANA-Scope Software					
	2.1	Registerkarte (Reiter oder Tab) CONNECT (Verbindungsaufbau)5				
	2.2	Registerkarte PARA1, Taste SEND, GET, GO, STOP (Parametrierung, Datenaustausch)7				
	2.3	Graphische Anzeigeelemente				
	2.4	Registerkarte TEACH (Lerntabelle)				
	2.5	Registerkarte GEN (Zeilenfarben und Farbspezifikationen)				
	2.6	Registerkarte REC (Datenaufzeichnung)				
	2.7 2.7.1 2.7.2	Registerkarte CALIB				
	2.8	Registerkarte SCOPE				
3.	Bedie	nung der TEMPCOMP-Scope Software31				
1.	Exterr	ne Triggerung der SPECTRO-3-MSM-ANA Farbsensoren				
5.	Ansch	llussbelegung der SPECTRO-3-MSM-ANA Farbsensoren				
6.	RS23	2 Schnittstellenprotokoll (communication protocol)				
۹.	Firmw	areupdate über Software Firmware Loader				

Shortcuts:

SEND	F9
GET	F10
GO	F11
STOP	F12

1. Installation der SPECTRO3-MSM-ANA-Scope Software

Für eine erfolgreiche Installation der Software müssen folgende Voraussetzungen erfüllt sein:

- Microsoft® Windows® 7, 8, 10
- IBM PC AT oder kompatibler
- VGA-Grafik
- Microsoft®-kompatible Maus
- Serielle RS232-Schnittstelle am PC oder USB Slot oder RJ45 Buchse
- Kabel cab-las4/PC für die RS232-Schnittstelle oder cab-4/USB für USB Slot oder cab-4/ETH

Installieren Sie nun die Software wie im Folgenden beschrieben:

- Sie k\u00f6nnen die Software direkt von der Installations-DVD installieren. Auf der DVD befindet sich der Ordner SOFTWARE. In diesem Ordner ist eine SETUP Anwendung. Zum Installieren der Software m\u00fcssen Sie diese Setup-Anwendung starten.
- Das Installationsprogramm meldet sich mit einem Dialogfeld und schlägt vor, die Software im Verzeichnis C: "DATEINAME" auf der Festplatte einzurichten.
 Akzeptieren Sie den Vorschlag mit OK oder [ENTER] oder ändern Sie die Pfad-Vorgaben nach Ihren Wünschen.
- 3. Während der Installation wird eine neue Programm-Gruppe für die Software im Windows Programm-Manager erzeugt. Außerdem wird in der erzeugten Programmgruppe ein Icon für den Start der Software automatisch generiert. Falls die Installation erfolgreich durchgeführt werden konnte, meldet sich das Installationsprogramm mit einer Dialogbox "Setup OK".
- 4. Nach erfolgreicher Installation kann die Software durch Doppelklick auf das Icon mit der linken Maustaste gestartet werden.

Windows™ ist ein Warenzeichen der Microsoft Corp. VGA™ ist ein Warenzeichen der International Business Machines Corp.

2. Bedienung der SPECTRO3-MSM-ANA-Scope Software

Bitte lesen Sie diesen Abschnitt zuerst durch, bevor Sie die Einjustierung und Parametrisierung des SPECTRO-3-MSM-ANA Farbsensors vornehmen.

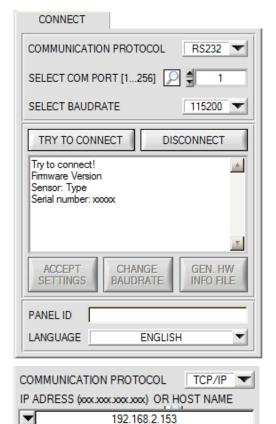
Nach dem Aufruf der SPECTRO3-MSM-ANA-Scope Software erscheint folgendes Fenster auf der Windows Oberfläche:

Das Fenster wird in seiner Größe und Position wieder dort platziert, wo es sich beim letzten Verlassen der Software befand. Durch einen Doppelklick mit der rechten Maustaste z.B. unterhalb des Minimierungssymbols wird das Fenster in seiner Originalgröße mittig zentriert.

Kommt es nicht automatisch zu einem Verbindungsaufbau z.B. wenn kein Sensor angeschlossen ist, dann kann die Software im OFFLINE Modus betrieben werden. Im Offline Modus ist lediglich ein Parameteraustausch mit einer Datei auf einem Speichermedium möglich. Dies ist für Analysezwecke von Parameterfiles oft hilfreich.

Ist ein Sensor angeschlossen und es kommt trotzdem zu keinem Verbindungsaufbau, dann stimmen entweder die SCOPE Version (Programm auf PC) und die Firmware Version (Programm im Sensor) nicht überein oder man muss die Schnittstelle zum Sensor richtig konfigurieren.

Sollte das Problem eine unterschiedliche Scope und Firmware Version sein, dann muss man sich die zur Firmware passende Scope Version vom Lieferanten besorgen.


Das Konfigurieren der Schnittstelle wird in der Registerkarte CONNECT erklärt.

Eine Kurz-Hilfe wird durch Drücken der rechten Maustaste auf ein einzelnes Element angezeigt.

Wegen einer besseren Übersicht werden je nach Parametrierung nicht benötigte Parameter, Displays, Graphen etc. ausgegraut oder unsichtbar geschaltet.

2.1 Registerkarte CONNECT

PORT NUMBER (Default 5000)

CONNECT:

Durch Drücken von **CONNECT** öffnet sich eine Ansicht, in der man die Schnittstelle wählen und konfigurieren kann.

In dem Funktionsfeld **COMMUNICATION PROTOCOL** kann entweder ein **RS232** oder ein **TCP/IP** Protokoll ausgewählt werden.

Wählt man RS232, kann man mit SELECT COM PORT einen Port von 1 bis 256 auswählen, je nachdem an welchem der Sensor angeschlossen ist. Der Software arbeitet mit einer eingestellten Baudrate, die über CHANGE BAUDRATE verändert werden kann (siehe unten). Sowohl der Sensor als auch die Benutzeroberfläche müssen mit der gleichen Baudrate arbeiten.

Über **SELECT BAUDRATE** stellt man auf der Benutzeroberfläche die Baudrate ein. Sollte die Software nach dem Starten nicht automatisch eine Verbindung aufbauen kann mit **SELECT BAUDRATE** die richtige Baudrate gefunden werden.

Wenn man mit einem Converter arbeitet, dann kann man die **COM PORT** Nummer über den Hardwaremanager in der Systemsteuerung ermitteln.

Durch Drücken auf die Lupe werden alle möglichen COM Ports im Display aufgelistet.

Zur Kommunikation des Sensors über ein lokales Netzwerk wird ein RS232 zu Ethernet Converter benötigt (cab-4/ETH). Dieser ermöglicht es eine Verbindung zum Sensor über das TCP/IP Protokoll herzustellen.

Um die **cab-4/ETH** Converter zu parametrisieren (Vergabe von IP-Adresse, Einstellung der Baudrate, ...), braucht man die im Internet kostenlos bereitgestellte **Software SensorFinder**.

Um eine Verbindung über den Converter herzustellen, muss dessen IP-Adresse oder HOST Name in das Eingabefeld IP ADRESS (xxx.xxx.xxx.xxx) OR HOST NAME eingetragen werden.

Im DROP DOWN Menü (Pfeil nach unten) sind die letzten 10 verwendeten IP Adressen aufgelistet und können durch Anklicken direkt übernommen werden. Die DROP DOWN Liste bleibt auch nach Beenden der Software erhalten.

Die PORT NUMBER für das cab-4/ETH ist auf 5000 festgelegt und muss belassen werden.

5000

Nach Drücken von **TRY TO CONNECT** versucht die Software eine Verbindung mit den eingestellten Parametern aufzubauen. Der Status der Kommunikation wird im Anzeigedisplay angezeigt. Meldet sich der Sensor mit seiner FIRMWARE ID, kann man mit **ACCEPT SETTINGS** die eingestellte Verbindungsart beibehalten. Die Software schaltet automatisch auf den Registerkarte **ASSISTANT** um. Erhält man ein **TIMEOUT**, konnte die Software keine Verbindung zum Sensor herstellen. In diesem Fall sollte zunächst geprüft werden, ob das Schnittstellenkabel richtig angebracht wurde, ob der Sensor an Spannung liegt und ob die eingestellten Parameter richtig gewählt wurden.

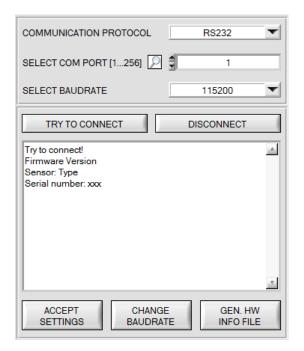
Wurde eine Verbindung mit ACCEPT SETTINGS bestätigt, dann startet die Software beim nächsten Aufruf automatisch mit dieser Einstellung.

Mit **DISCONNECT** trennt man die Verbindung vom Sensor zum PC. Die Software schaltet in den OFFLINE Modus in dem nur ein Parameteraustausch mit einer Datei auf einem Speichermedium möglich ist.

Unter **PANEL ID** kann man eine Bezeichnung eingeben, die an verschiedenen Stellen im Programmfenster angezeigt wird, und in verschiedene Files (z.B. Recordfile) mit abgespeichert wird.

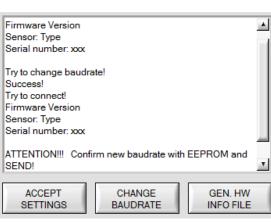
Mit dem Eingabefeld LANGUAGE kann man eine Sprache einstellen, mit der die einzelnen Controls auf der Oberfläche dargestellt werden. Dies gilt auch für die Hilfe, die mit der rechten Maustaste aufgerufen wird.

Beachte:


Grundvoraussetzung für die Messwertübertragung vom PC zum Sensor ist die stabile Funktion der Schnittstelle.

Aufgrund der begrenzten Datenübertragungsrate über die serielle RS232-Schnittstelle können nur langsame Veränderungen der Rohsignale am Sensor-Frontend im graphischen Ausgabefenster des PC mitverfolgt werden.

Zur Einhaltung der maximalen Schaltfrequenz am Sensor muss zudem der Datenaustausch mit dem PC beendet werden (STOP-Taste drücken).


Die Baudrate zur Datenübertragung über die RS232 Schnittstelle kann mit **SELECT BAUDRATE** und **CHANGE BAUDRATE** eingestellt werden.

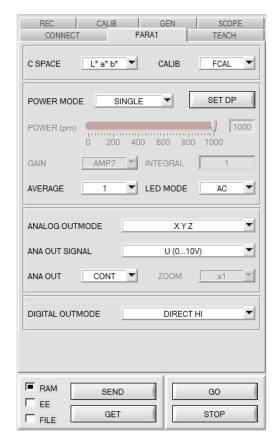
Zum Ändern muss zuerst über TRY TO CONNECT eine Verbindung aufgebaut werden. Erst jetzt ist der Button CHANGE BAUDRATE aktiv.

Unter **SELECT BAUDRATE** kann jetzt eine neue Baudrate ausgewählt werden.

Durch Drücken von **CHANGE BAUDRATE** wird die neue Baudrate zum Sensor übertragen.

Nachdem die neue Baudrate erfolgreich übertragen worden ist arbeitet der Sensor mit der neuen Baudrate. Außerdem erscheint im Anzeigefenster eine Aufforderung **EEPROM** zu selektieren und anschließend **SEND** zu drücken. Erst nach Drücken von **EEPROM** und **SEND** wird bei einem Hardware-Reset mit der neuen Baudrate gestartet.

Durch Drücken von **ACCEPT SETTINGS** werden die aktuellen Schnittstellen-Einstellungen gespeichert und nach einem Neustart der Software automatisch eingestellt.



Über den Button **GEN. HW INFO FILE** wird ein File erzeugt, in dem alle wichtigen Sensordaten verschlüsselt hinterlegt werden.

Dieses File kann zu Diagnosezwecke an den Hersteller gesendet werden.

2.2 Registerkarte PARA1, Taste SEND, GET, GO, STOP

PARA1:

Durch Drücken von **PARA1** öffnet sich eine Ansicht, in der man die Sensorparameter einstellen kann.

Beachte: Eine Änderung der Funktionsgruppen Parameter wird erst nach Betätigung der SEND-Taste im MEM-Funktionsfeld am Sensor wirksam!

SEND [F9]:

Durch Anklicken der Taste **SEND** (bzw. per Shortcut Keytaste F9) werden alle aktuell eingestellten Parameter zwischen PC und dem Sensor übertragen. Das Ziel der jeweiligen Parameterübertragung wird durch den selektierten Auswahlknopf (**RAM**, **EEPROM** oder **FILE**) festgelegt.

GET [F10]:

Durch Anklicken der Taste **GET** (bzw. per Shortcut Keytaste F10) können die aktuellen Einstellwerte vom Sensor abgefragt werden. Die Quelle des Datenaustausches wird über den selektierten Auswahlknopf (**RAM**, **EEPROM** oder **FILE**) festgelegt.

RAM:

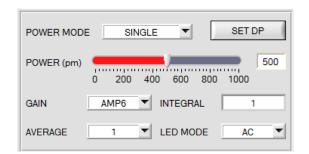
Die aktuellen Parameter werden nach Drücken von **SEND** in den **RAM** Speicher des Sensors geschrieben bzw. nach Drücken von **GET** aus dessen **RAM** Speicher gelesen, d.h. nach Ausschalten der Spannung am Sensor gehen diese Parameter wieder verloren.

EEPROM:

Die aktuellen Parameter werden nach Drücken von **SEND** in den Speicher des nichtflüchtigen **EEPROMS** im Sensor geschrieben oder durch Drücken von **GET** aus dessen **EEPROM** gelesen, d.h. nach Ausschalten der Spannung am Sensor bleiben die im internen **EEPROM** abgelegten Parameter erhalten.

FILE:

Die aktuellen Parameter können nach Drücken von **SEND** in ein auswählbares File auf der Festplatte geschrieben werden bzw. durch Drücken von **GET** davon gelesen werden. Nach Drücken von **SEND** oder **GET** öffnet sich eine Dialogbox, in der man das gewünschte File selektieren kann.


GO [F11]:

Nach Anklicken dieser Taste wird der Datentransfer vom Sensor zum PC über die serielle RS232 Schnittstelle gestartet. Unter **SOURCE** wählt man aus, welche Signale in den Displays und Graphen zur Anzeige gebracht werden.

STOP [F12]:

Nach Änklicken dieser Taste wird der Datentransfer vom Sensor zum PC über die serielle RS232 Schnittstelle beendet.

POWER MODE: siehe SET DP

POWER:

Die Senderleistung wird entsprechend dem am Schieberegler POWER [pm] eingestellten Wert konstant gehalten (empfohlene Betriebsart). POWER kann mit Hilfe des Schiebereglers oder durch Eingabe in die Edit-Box eingestellt werden. Der Wert 1000 bedeutet volle Intensität an der Sendereinheit, beim Wert 0 wird die kleinste Intensität am Sender eingestellt.

POWER ist nur bei CALIB=OFF verfügbar.

LED MODE:

Hier kann eingestellt werden, wie die integrierte Lichtquelle des Sensors angesteuert wird.

DC: In diesem Mode ist der Sensor extrem schnell. Leider ist der Sensor im **DC** Mode leicht Fremdlicht empfindlich. Leuchtet jedoch die Fremdlichtquelle nicht direkt in den Empfänger des Sensors, dann wird das Signal nur sehr geringfügig beeinflusst.

AC: Hier ist der Sensor unabhängig gegenüber Fremdlicht. Dies wird dadurch erreicht, dass die integrierte Lichtquelle "moduliert" wird. D.h. das Licht wird ein und ausgeschaltete. Im ausgeschalteten Zustand wird einfach der Fremdanteil im Signal ermittelt und vom eingeschalteten Zustand abgezogen.

GAIN:

Hier wird die Verstärkung des Empfängers eingestellt. Es können 8 verschiedene Verstärkungsstufen eingestellt werden (AMP1 bis AMP8). **GAIN** sollte so eingestellt werden, dass der Sensor bei einem mittleren **POWER** Wert in seinem Dynamikbereich (X, Y, Z zwischen 2750 und 3750) arbeitet.

Im **AC** Mode wirkt sich **GAIN** direkt auf die Scanfrequenz aus. Die momentane Scanfrequenz wird in der Registerkarte **SCOPE** angezeigt.

GAIN ist nur bei CALIB=OFF verfügbar.

AVERAGE:

In diesem Funktionsfeld wird die Anzahl der Abtastwerte (Messwerte) eingestellt, über die das am Empfänger gemessene Rohsignal gemittelt wird. Ein größerer **AVERAGE** Vorgabewert reduziert das Rauschen der Rohsignale der Empfangseinheit, gleichzeitig verringert sich die maximal erreichbare Schaltfrequenz des Sensors.

INTEGRAL:

In diesem Funktionsfeld wird die Anzahl der Abtastwerte (Messwerte) eingestellt, über die das am Empfänger gemessene Rohsignal aufsummiert wird. Durch diese Integralfunktion lassen sich auch extrem schwache Signale sicher erkennen. Ein größerer INTEGRAL Vorgabewert erhöht das Rauschen der Rohsignale der Empfangseinheit, gleichzeitig verringert sich die maximal erreichbare Schaltfrequenz des Sensors. INTEGRAL ist nur bei CALIB=OFF verfügbar.

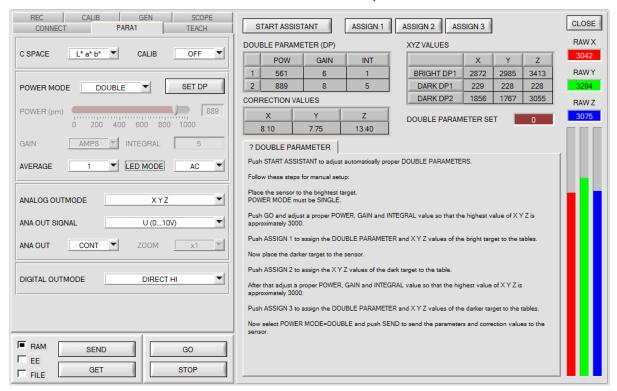
INFO:

Der POWER Schieberegler, GAIN und INTEGRAL sind nur bei CALIB = OFF und POWER MODE = SINGLE wirksam.

Ansonsten arbeitet der Sensor mit den bei der Kalibrierung eingestellten Werten.

SET DP:

Hat man bei einer Applikation sehr helle und zugleich sehr dunkle Oberflächen und der Sensor ist so eingestellt, dass er bei den hellen Oberflächen nicht in Sättigung ist, dann bekommt man bei den dunklen Oberflächen oft sehr wenig Signal zurück.


Geringe Schwankungen bei sehr niedrigem Signal ergeben eine große Änderung bei der Farbraumberechnung (C-SPACE). Um dies zu minimieren, schaltet der Sensor bei PMODE = DOUBLE automatisch zwischen 2 DOUBLE PARAMETER Sätzen hin und her. Satz 2 muss so eingestellt sein, dass er das Signal am stärksten verstärkt.

Wenn das Signal zu hoch ist (Sättigung), dann schaltet er automatisch auf Satz 1 um.

Damit die Farbraumkoordinaten bei Satz 2 stimmen, muss das Signal mit einem Korrekturfaktor beaufschlagt werden.

Die beiden DOUBLE PARAMETER Sätze müssen dem Sensor im Vorfeld eingestellt werden.

Nach Drücken von **SET DP** (Set Double Parameter) öffnet sich rechts ein Fenster, das es erlaubt zwei Sätze einzustellen. Ein Double Parametersatz wird definiert durch **POWER, GAIN** und **INTEGRAL**.

Automatische Einstellung der DOUBLE Parametersätze:

Durch Drücken von **START ASSISTANT** startet eine Menüführung zur automatischen Einstellung der Double Parametersätze. Folgen Sie einfach den Instruktionen.

Manuelle Einstellung der DOUBLE Parametersätze:

Stellen Sie CALIB=OFF und POWER MODE=SINGLE ein.

Legen Sie dem Sensor die hellste Oberfläche vor wählen Sie einen passenden **POWER, GAIN** und **INTEGRAL** Wert, so dass der hellste Kanal bei ca. 3000 Digit liegt.

Drücken Sie jetzt **ASSIGN 1** um die Double Parameter in die Tabelle **DP** in Zeile 1 zu übernehmen.

Außerdem werden die X Y Z Werte in die Tabelle XYZ VALUES eingetragen.

Jetzt muss dem Sensor die dunkle Oberfläche vorgelegt werden.

Die dunkle Oberfläche sollte so beschaffen sein, dass der schwächste Kanal ein Signal größer als 100 Digit hat. Nach Drücken von **ASSIGN 2** werden die X Y Z Werte in die Zeile DARK DP1 der Tabelle **XYZ VALUES** übernommen.

Jetzt müssen **POWER, GAIN** und **INTEGRAL** so eingestellt werden, dass der stärkste Wert bei ca. 3000 liegt. Drücken Sie **ASSIGN 3** um die Double Parameter in die Tabelle **DP** in Zeile 2 zu und die X Y Z Werte in die Tabelle **XYZ VALUES** zu übernehmen.

Es werden automatisch die Korrekturwerte berechnet und in die Tabelle CORRECTION VALUES eingetragen.

INFO!

Die Double Parameter Sätze werden erst nach Drücken von SEND aktiviert!

Die Tabellen dienen nur zur Anzeige. Man kann sie nicht editieren.

Im Display **DOUBLE PARAMETER SET** wird angezeigt, mit welchem Double Parametersatz der Sensor aktuell arbeitet. Zeigt das Display 0, dann arbeitet der Sensor mit den Einstellungen im Reiter **PARA1**.

C SPACE:

Wahl eines Farbraums (COLOR SPACE) zur Berechnung der Farbvalenz.

xyY:

Aus den Normfarbwerten X, Y, Z werden die Normfarbwertanteile x, y berechnet. x und y kennzeichnen dabei die Farbe und Y dienst als Hellbezugswert.

Helligkeitswe	$Y = \frac{Y}{4096}$		
Farbkoordin	aten $x = \frac{X}{X + Y}$	$y = \frac{Y}{X + Y + Z}$	7
Farbabstand	$\Delta E^* = \sqrt{(\Delta x)}$	$x)^2 + (\Delta y)^2 + (\Delta Y)^2$	

L*a*b*:

Das L*a*b* Farbsystem (auch CIELAB Farbsystem genannt) stellt einen der gleichabständigen Farbräume dar, die 1976 von der CIE definiert wurden.

ale 1070 ven der GIE deminert Warden.						
Helligkeitswert	$L^* = 116 \left(\frac{Y}{Y_n} \right)^{1/3} - 16$					
Farbkoordinaten	$a^* = 500 \left[\left(\frac{X}{X_n} \right)^{1/3} - \left(\frac{Y}{Y_n} \right)^{1/3} \right]$	$b^* = 200 \left[\left(\frac{Y}{Y_n} \right)^{1/3} - \left(\frac{Z}{Z_n} \right)^{1/3} \right]$				
Farbabstand	$\Delta E^* = \sqrt{(\Delta L^*)^2 + (\Delta a^*)^2 + (\Delta b^*)^2}$					

L*C*h*:

Dem L*C*h* Farbsystem liegt das gleiche Diagramm wie dem L*a*b* System zugrunde, es werden jedoch Polarkoordinaten berechnet. In L*C*h* Farbsystem können keine Teachvektoren bestimmt werden, deshalb wird DIGITAL OUTMODE = OFF gesetzt und disabled.

	10:17:12 00:11:1022 0:11 g000121 arra aroanorar						
Helligkeitswert	$L^* = 116 \left(\frac{Y}{Y_n}\right)^{1/3} - 16$						
Buntheit	$C^* = \sqrt{(a^*)^2 + (b^*)^2}$						
Farbtonwinkel	$h^* = tan^{-1}\frac{b^*}{a^*}$						

L*u*v* und L*u'v':

Das L*u*v* Farbsystem (auch CIELUV Farbsystem genannt) stellt einen der gleichabständigen Farbräume dar, die 1976 von der CIE definiert wurden.

ile 1010 Volt del GIE delimert Warden.					
Helligkeitswert	$L^* = 116 \left(\frac{Y}{Y_n} \right)^{1/3} - 16$				
	$u^* = 13L^*(u' - u_n')$	$v^* = 13L^*(v' - v_n')$			
Farbkoordinaten	$u' = \frac{4X}{X + 15Y + 3Z} = \frac{4x}{3 - 2x + 12y}$	$v' = \frac{9Y}{X + 15Y + 3Z} = \frac{9y}{3 - 2x + 12y}$			
	$u_n' = \frac{4X_n}{X_n + 15Y_n + 3Z_n} = \frac{4x_n}{3 - 2x_n + 12y_n}$	$v_n' = \frac{9Y_n}{X_n + 15Y_n + 3Z_n} = \frac{9y_n}{3 - 2x_n + 12y_n}$			
Farbabstand	$\Delta E^* = \sqrt{(\Delta L^*)^2 + (\Delta u^*)^2 + (\Delta v^*)^2}$				

XYZ	Normfarbwerte XYZ der Probe
Xn Yn Zn	Normfarbwerte XYZ eines vollkommen mattweißen Körpers.
ΔL* Δa* Δb*	Differenzen der L*, a* und b* Werte zwischen Probenfarbe und Bezugsfarbe.
ΔL* Δu* Δv*	Differenzen der L*, u* und v* Werte zwischen Probenfarbe und Bezugsfarbe.
u' v'	Farbkoordinaten der UCS-Farbtafel (CIE 1976)
u'n v'n	Farbkoordinaten eines vollkommen mattweißen Körpers.

CALIB:

Die Sensoren sind ab Werk kalibriert.

Möchte man den Sensor im "Unkalibrierten" Modus betreiben wählt man CAL=OFF. Dies macht man dann, wenn der Sensor schnell sein muss. Sowohl FCAL als auch UCAL verlangsamen den Sensor.

Stellt man den Parameter CALIB auf FCAL (Factory CALibration), dann arbeitet der Sensor mit dieser werksseitigen Kalibrierung.

Alternativ kann der Benutzer den Sensor selber auf verschiedene Oberflächen kalibrieren (User CALibration). Wählt man CALIB=UCAL, arbeitet der Sensor mit dieser vom Benutzer erstellten Kalibrierung.

Wählt man CALIB=UCAL WB oder FCAL WB, dann kann man über den Eingang IN0 einen Weißlichtabgleich durchführen. Dazu muss die bei der Kalibrierung verwendete Referenzoberfläche vorm Sensor platziert werden und der Eingang IN0 betätigt werden.

Die errechneten Weißlicht-Kalibrierungsfaktoren werden in der Tabelle CALIB FACTORS OF WHITE BALANCE im Reiter SENSOR DATA angezeigt.

Um die Weißlichtkalibrierungsfaktoren für CALIB=UCAL WB zu erhalten muss in der Registerkarte CALIB auf GET CF gedrückt werden.

Um die Weißlichtkalibrierungsfaktoren für CALIB=FCAL WB zu erhalten muss man auf den Rahmen in dem sich GET CF befindet einen Doppelklick mit der rechten Maustaste machen und als Passwort GETCF eingeben.

ANALOG OUTMODE:

In diesem Funktionsfeld kann eingestellt werden, welche Signale der Sensor an seinen Analogausgängen ausgibt.

OFF: Es wird keine Analogsignal ausgegeben.

XYZ:

Die Normfarbwerte X, Y, Z werden mit einer Auflösung von 12 Bit erfasst.

Die Signale können daher Werte zwischen 0 und 4095 annehmen.

Diese Werte werden auf den entsprechenden Analogausgängen von 0...+10V oder 4...20mA ausgegeben.

COLOR SPACE:

Die Farbkoordinaten des gewählten C SPACE werden auf 12 Bit normiert und auf den entsprechenden Analogausgängen von 0 bis 10V ausgegeben.

Abhängig von der Farbkoordinate ist der analoge Ausgabebereich wie folgt aufgeteilt:

x y Y von 0 bis +1 (0V=0, 10V=1)

L* von 0 bis +100 (0V=0, 10V=100)

a* von -150 bis +150 (0V=-150, 10V=150)

u* von -788 bis +724 (0V=-788, 10V=724)

u' von 0 bis +4 (0V=0, 10V=4)

C* von 0 bis +538 (0V=0, 10V=538)

b* von -150 bis +150 (0V=-150, 10V=150) v* von -154 bis +164 (0V=-154, 10V=164)

v' von 0 bis +0.6 (0V=-0, 10V=0.6)

h* von 0 bis 360 (0V=0, 10V=360)

CS REF:

Wenn der Eingang INO auf HI gesetzt wird, werden die aktuellen C SPACE Farbkoordinaten als 5V Referenzwerte gespeichert.

D.h. wenn der jeweilige aktuelle C SPACE Farbwert dem Referenzwert entspricht, wird an dem entsprechenden Analogausgang 5V ausgegeben. Weicht der aktuelle Wert vom Referenzwert ab, dann wird diese Abweichung um den Faktor ZOOM verstärkt am entsprechendem Analogausgang ausgehend von 5V ausgegeben

Beispiel: ZOOM = x4, a*(Referenz) = 60, a*(aktuell) = 70 → Abweichung = 10 (1 Digit entspricht ca. 2,44mV) Ausgegeben wird: 5V+(10Digit * 32(Zoom) * 2,44mV) = ca. 5,78V.

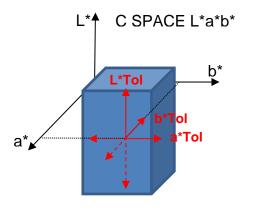
Die Referenzwerte werden im Graphfenster unter dem Reiter **C SPACE** angezeigt.

Da der Sensor nur über einen Hardware Eingang (IN0) verfügt, ist diese Eingabemöglichkeit nicht immer gegeben. Ist z.B. ANA OUT = IN0 L→H gewählt, dann wird der Eingang bereits für eine gesteuerte Ausgabe des Analogsignals verwendet werden und steht für CS REF nicht mehr zur Verfügung.

Funktionsfelder, die nicht zur Verfügung stehen, werden entweder ausgeblendet oder inaktiv geschaltet.

ANA OUT SIGNAL:

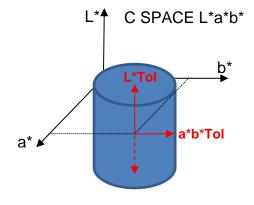
Hier stellt man ein, ob das Analogsignal als Spannung (0...10V) oder Strom (4...20mA) ausgegeben werden soll.


SHAPE MODE:

In diesem Funktionsfeld kann eingegeben werden, ob man die Farbraumkoordinaten (z.B. L* a* b*) als Block, Zylinder oder Kugel im Raum betrachtet.

Betrachtet man sie als Block, dann hat jede Farbraumkoordinate eine eigene Toleranz (a*Tol, b*Tol, L*Tol).

Der Farbabstand **delta E** wird aus den Farbkoordinaten **(a* b*)** berechnet.


Eine Farbe ist dann wieder erkannt, wenn sich die aktuellen Farbraumkoordinaten im Farbblock befinden.

Betrachtet man sie als Zylinder, dann haben die Farbkoordinaten (a* b*) eine eigene Toleranz (a*b*Tol) und der Helligkeitswert (L*) hat seine eigene Toleranz (L*Tol).

Der Farbabstand **delta E** wird aus den Farbkoordinaten (a^*b^*) berechnet.

Eine Farbe ist dann wieder erkannt, wenn sich die aktuellen Farbraumkoordinaten im Farbzylinder befinden.

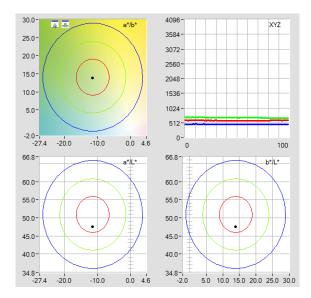
delta E

C SPACE L*a*b*

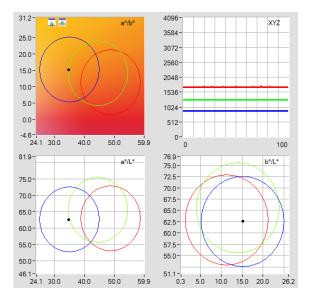
Im Kugelmodus gibt es nur eine Toleranz für die Farbraumkoordinaten.

Der Farbabstand **delta E** wird aus den Farbraumkoordinaten **(L* a* b*)** berechnet.

Eine Farbe ist dann wieder erkannt, wenn sich die aktuellen Farbraumkoordinaten in der Farbkugel befinden.


EVALUATION MODE:

In diesem Funktionsfeld kann der Auswerte-Modus am SPECTRO-3-MSM-ANA Farbsensor eingestellt werden.


Nachfolgend wird zur Erklärung der Auswertemodi FIRST HIT und BEST HIT der SHAPE MODE "SPHERE" herangezogen.

	a*	b*	L*	deltaE			
0	-11.35	13.99	50.85	5.00	0.00	0.00	
1	-11.35	13.99	50.85	10.00	0.00	0.00	
2	-11.35	13.99	50.85	15.00	0.00	0.00	

	a*	b*	L*	deltaE			
0	48.89	11.34	62.84	10.00	0.00	0.00	
1	44.65	14.01	65.48	10.00	0.00	0.00	
2	35.10	15.17	62.53	10.00	0.00	0.00	

FIRST HIT:

Die aktuell gemessenen Farbwerte werden mit den Vorgabewerten in der **TEACH TABLE** (Farbtabelle), beginnend mit der Lernfarbe 0, verglichen. Falls beim zeilenweisen Vergleich die aktuellen Farbwerte mit den in der Farbtabelle eingetragenen Lern-Parametern übereinstimmen, wird dieser erste "Treffer" in der Farbtabelle als Farbnummer (**C-No.**) angezeigt und an den Digitalausgängen entsprechend der Einstellung des Parameters **OUTMODE** ausgegeben (siehe **OUTMODE**).

Falls die aktuelle Farbe mit keiner der Lernfarben übereinstimmt, wird der Farbcode **C-No**. = 255 gesetzt ("Fehlerzustand").

Tipp! Dieser Modus findet seine Anwendung, wenn nur eine Farbe eingelernt wird und diese gegen "wegdriften" kontrolliert werden muss. Durch die aufsteigenden Toleranzfenster kann man dies sehr gut detektieren und eventuelle Gegenmaßnahmen einleiten.

Tipp! Eine Eingabe in eine Zelle der Tabelle erfolgt entweder mit einem Doppelklick auf die jeweilige Zelle, oder durch Markieren der Zelle und Drücken von F2.

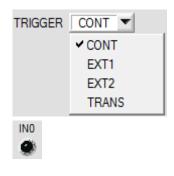
Tipp! Die Lernfarben werden erst nach Drücken von **SEND** aktiviert!

BEST HIT:

Die aktuell gemessenen Farbwerte werden mit den Vorgabewerten in der **TEACH TABLE** (Farbtabelle), beginnend mit der Lernfarbe 0, verglichen. Falls beim zeilenweisen Vergleich die aktuellen Farbwerte mit mehreren in der Farbtabelle eingetragenen Lern-Parametern übereinstimmen, ist der Lernparameter ein Treffer, welcher die **kürzeste Distanz** zum aktuellen Farbwert hat.

Dieser "Treffer" in der Farbtabelle wird als Farbnummer (**C-No**.) angezeigt und an den Digitalausgängen entsprechend der Einstellung des Parameters **OUTMODE** ausgegeben (siehe **OUTMODE**).

Falls die aktuelle Farbe mit keiner der Lernfarben übereinstimmt, wird der Farbcode **C-No**. = 255 gesetzt ("Fehlerzustand").


Tipp! Dieser Modus findet seine Anwendung, wenn mehrere Farben voneinander getrennt werden müssen und nur gewisse Oberflächenschwankungen erlaubt sind.

Tipp! Da man hier bei mehreren "Treffern" die kürzeste Distanz der aktuellen Farbe zu den Zentren der eingelernten Farben sucht, dürfen die einzelnen Toleranzfenster (Kreise) überlappen. Der Sensor detektiert den "**besten "Treffer"**.

Tipp! Eine Eingabe in eine Zelle der Tabelle erfolgt entweder mit einem Doppelklick auf die jeweilige Zelle, oder durch Markieren der Zelle und Drücken von F2.

Tipp! Die Lernfarben werden erst nach Drücken von **SEND** aktiviert!

TRIGGER:

In diesem Funktionsfeld wird die Triggerbetriebsart am Sensor eingestellt. Wenn **TRIGGER** nicht **CONT** ist, zeigt die LED **IN0** ein Triggerereignis.

CONT: Kontinuierliche Farberkennung (kein Trigger-Ereignis notwendig).

FXT1:

Die Farberkennung wird über den externen Triggereingang (IN0 Pin3 grn am Kabel cab-las8/SPS) gestartet. Ein Triggerereignis wird erkannt, solange am Eingang IN0 +24V anliegt (HIGH aktiv).

Nachdem der Triggereingang wieder auf LOW geht, wird der zuletzt erkannte Zustand (C-No.) an den Ausgängen gehalten.

EXT2: Selbiges Verhalten wie im Modus EXT1 mit dem Unterschied, dass nachdem der Triggereingang wieder auf LOW geht, der Fehlerzustand (Farb-Nr. = 255) ausgegeben wird.

TRANS: Selbiges Verhalten wie **CONT.** Jedoch wird im Gegensatz zu **CONT** in diesem Modus die Sendequelle ausgeschaltet, wenn kein Triggerereignis (IN0) gegeben ist.

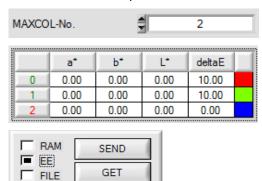
EXTEACH:

In allen Auswertemodi besteht die Möglichkeit, von extern über IN0 eine Farbe einzulernen.

OFF: Die externe Teach Möglichkeit ist ausgeschaltet.

ON:

Dem Sensor können über IN0 bis zu 3 Farben eingelernt werden.


Im Auswertemode **BEST HIT** kann über INO auf jede einzelne Zeile in der **TEACH TABLE** gelernt werden. Bei **FIRST HIT** wird die momentan anliegende Farbe in alle über **MAXCOL-No** aktivierte Zeilen eingelernt.

Wählen Sie die Funktion EXTERN TEACH = ON.

Stellen Sie die Power so ein, dass der Sensor weder übersteuert ist, noch dass zu wenig Signal ankommt. Wählen Sie aus, wie viele Farben Sie von extern lernen wollen.

Klicken Sie auf Registerkarte TEACH, um in die TEACH TABLE zu wechseln.

Geben Sie nun die entsprechenden Toleranzen für die Farben ein, die Sie lernen wollen.

In diesem Beispiel wurde MAXCOL-No. = 2 ausgewählt, d.h., der Sensor soll die Farbinformationen wieder finden, welche in den ersten 2 Zeilen der TEACH TABLE durch externes Lernen über INO abgespeichert werden. Da sich der Sensor seine Toleranzen deltaE nicht selber berechnen kann, müssen diese Werte einmalig eingegeben werden (hier überall 10) und zusammen mit MAXCOL-No. sowie EXTEACH = ON im EEPROM abgespeichert werden.

Wählen Sie nun im Funktionsfeld **EE** und klicken auf **SEND**. Ab jetzt kann auf den PC verzichtet werden, solange man immer nur bis zu **MAXCOL-NO**. Farben lernen und die Toleranzen nicht verändern möchte.

INFO:

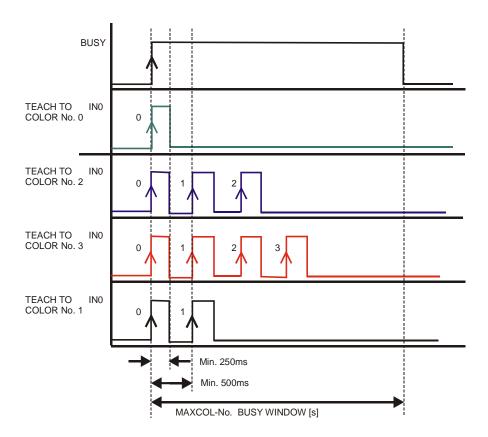
Die gelernten Farben kann man sich natürlich jederzeit mit dem PC ansehen.

Die eingelernten Farben werden im **EEPROM** des Sensors hinterlegt. D.h. die Informationen gehen nach dem Ausschalten nicht verloren.

Diese Funktion ist eher zum "Nach-Teachen" gedacht, da der Sensor seinen **POWER** Wert nicht selbstständig anpasst.

EXTEACH=ON:

Bevor mit dem externen TEACH Vorgang begonnen werden kann, muss dem Sensor die zu lernende Farbe vorliegen.


Mit einer positiven Flanke an IN0 (grüne Litze) wird der externe TEACH Vorgang gestartet. Dabei ändern die Ausgänge OUT0 und OUT1 abwechselnd ihren Zustand zwischen 0V und 24V. Ab jetzt hat der Benutzer eine gewisse Anzahl von Sekunden Zeit, dem Sensor die Position mitzuteilen, auf die die Farbinformationen (X Y INT bzw. siM) in der TEACH TABLE abgelegt werden sollen. Das BUSY Fenster ist die Zeit, in der der Benutzer dem Sensor die Lernzeilen mitteilen kann. Es richtet sich nach der eingestellten MAXCOL-No. (z.B. ca. 2 Sekunden bei MAXCOL-No. = 2).

Die erste positive Flanke (Startflanke 0) selektiert die Position 0 in der **TEACH TABLE**. Jede weitere positive Flanke selektiert eine Position höher (siehe nachfolgende Tabelle).

Beispiel

Möchte man auf die Position 3 in der **TEACH TABLE** die momentan anliegende Farbe speichern, sind folgende Schritte erforderlich:

- Start des externen TEACH Vorgangs mit einer positiven Flanke (0) an IN0 → Position 0 ist selektiert.
- 2. Eine weitere positive Flanke (1) selektiert die Position 1 in der TEACH TABLE.
- 3. Eine weitere positive Flanke (2) selektiert die Position 2 in der TEACH TABLE.
- 4. Eine weitere positive Flanke (3) selektiert die Position 3 in der TEACH TABLE.
- 5. Nun ist die gewünschte Position selektiert.
- 6. Nach Ablauf des BUSY Fensters beginnt der Sensor mit der Auswertung.
- 7. Um eine weitere Farbe zu lernen → gehe zu Pos. 1

INTLIM:

In dieser Edit-Box kann ein Intensitätslimit eingestellt werden. Falls die an der Empfangseinheit ankommende aktuelle

Intensität (X+Y+Z)/3 diese Grenze unterschreitet, wird keine Farbauswertung mehr durchgeführt und der Fehlerzustand ausgegeben.

Beachte: Fehlerzustand falls: (X+Y+Z)/3 < INTLIM

MAXCOL-No.:

In diesem Funktionsfeld wird die Anzahl der Farben festgelegt, die kontrolliert werden sollen.

Bei **DIGITAL OUTMODE = BINARY HI** oder **BINARY LO** können maximal 3 Farben eingelernt werden. Bei **DIGITAL OUTMODE = DIRECT HI** oder **DIRECT LO** können maximal 2 Farben gelernt werden.

Der hier eingestellte Zahlenwert bestimmt die aktuell mögliche Abtastrate des Farbsensors. Je weniger Farben kontrolliert werden müssen, desto schneller arbeitet der Sensor. Der hier vorgegebene Zahlenwert bezieht sich auf die Anzahl der Zeilen (beginnend mit der Zeile 0) in der Farbtabelle **TEACH TABLE** (→ 2.4 Registerkarte TEACH TABLE).

DIGITAL OUTMODE:

Mit dieser Funktionstastengruppe kann die Ansteuerung der 2 Digitalausgänge ausgewählt werden.

OFF:

Es wird kein digitales Signal ausgegeben. Alle dazugehörigen Funktionsfelder werden ausgeblendet.

DIRECT:

In diesem Modus sind maximal 2 Lernfarben erlaubt.

Falls beim zeilenweisen Vergleich die aktuellen Farbwerte mit den in der Farbtabelle eingetragenen Lern-Parametern übereinstimmen, wird dieser "Treffer" in der Farbtabelle als Farbnummer (C-No.) angezeigt und an den Digitalausgängen (OUT0 und OUT1) direkt ausgegeben.

DIRECT HIS

Steht der Wahlschalter auf **DIRECT HI**, so liegt der entsprechende Digitalausgang auf HIGH. Wenn keine Farbe erkannt wurde, befinden sich die Digitalausgänge im LOW-Zustand.

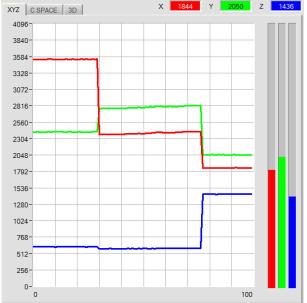
DIRECT LO:

Steht der Wahlschalter auf **DIRECT LO**, so liegt der entsprechende Digitalausgang auf LOW und die anderen auf HIGH. Wenn keine Farbe erkannt wurde, befinden sich die Digitalausgänge im HIGH-Zustand.

BINARY HI:

Falls beim zeilenweisen Vergleich die aktuellen Farbwerte mit den in der Farbtabelle eingetragenen Lern-Parametern übereinstimmen, wird dieser "Treffer" in der Farbtabelle als Farbnummer (C-No.) angezeigt und an den Digitalausgängen (OUT0 und OUT1) als **Bitmuster** angelegt. Es können maximal 3 Farben eingelernt werden.

BINARY LO:

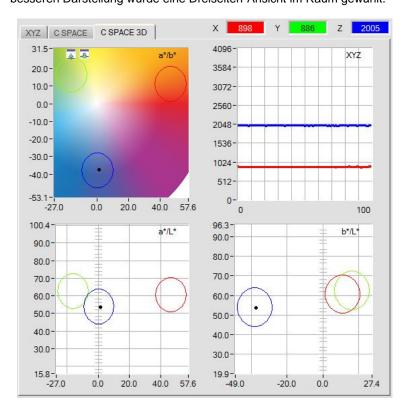

Selbe Funktion wie BINARY HI jedoch wird das Bitmuster invers ausgegeben.

2.3 Graphische Anzeigeelemente

Registerkarte XYZ:

Aktuelle Rohsignale (Normfarbwerte) X, Y, Z des 3-fach Empfängers werden angezeigt.

Registerkarte C SPACE:


Farbkoordinaten des unter **C SPACE** ausgewählten Farbraums werden in einem Liniengraph angezeigt.

Registerkarte C SPACE 3D:

Dreiseitenansicht der gelernten Farbe im Raum.

Die eingelernten <u>Farbraumkoordinaten</u> mit deren Toleranzen und die aktuelle Farbposition werden angezeigt. Zur besseren Darstellung wurde eine Dreiseiten-Ansicht im Raum gewählt.

Durch einen Doppelklick mit der linken Maustaste in einen Graphen werden alle Kreise grau dargestellt. Nur Kreis der der erkannten Farbe wird farblich dargestellt.

Mit einem Einfachklick kommt man wieder zur normalen Ansicht.

Ein Doppelklick mit der linken Maustaste in den XYZ Graphen startet eine automatische Zoomfunktion. Mit einem Einfachklick beendet man diese.

Der Graph mit der Farbtafel im Hintergrund kann vergrößert und verkleinert werden.

In diesen Zahlenwert Displays werden die aus den Normfarbwerten X, Y, Z berechneten Farbkoordinaten und Helligkeitswerte angezeigt. Die Berechnung erfolgt wie in C SPACE beschrieben.

In diesen Zahlenwert Displays werden die Abweichungen der einzelnen Farbkoordinaten und des Helligkeitswerts der aktuellen Oberfläche zum "Farbtreffer" (C-No:) in der Teach Tabelle angezeigt.

Die Werte werden auf der PC Oberfläche und nicht im Sensor berechnet und lediglich in diesen Displays zur Anzeige gebracht.

delta E:

In diesem Display wird der Farbabstand zu einem Farbtreffer angezeigt.

Die Berechnung erfolgt wie in **C SPACE** beschrieben.

Im Auswertemodus **FIRST HIT** entspricht **delta E** der Distanz zu einem Farbtreffer. Wenn keine Farbe getroffen wurde, dann wird **delta E** in Bezug zur letzten, in der Farbtabelle gültigen Farbe errechnet (abhängig von **MAXCOL-No**.)

Im Auswertemodus **BEST HIT** entspricht **delta E** ebenfalls der Distanz zu einem Farbtreffer. Wenn jedoch keine Farbe erkannt wurde dann nimmt **delta E** den Wert -1.00 an.

Dies ist auch der Fall, wenn die aktuelle Intensität (X+Y+Z)/3 den Parameter INTLIM unterschreitet.

C-No.:

In diesem Zahlenwert-Ausgabefeld wird die aktuell erkannte Farbnummer entsprechend dem Eintrag in der **TEACH TABLE** angezeigt. Die aktuell erkannte Farbnummer wird als entsprechendes Bitmuster an der Digitalausgängen OUT0 und OUT1 angelegt.

Der Wert 255 bedeutet, dass keine der eingelernten Farbe wiedererkannt wird.

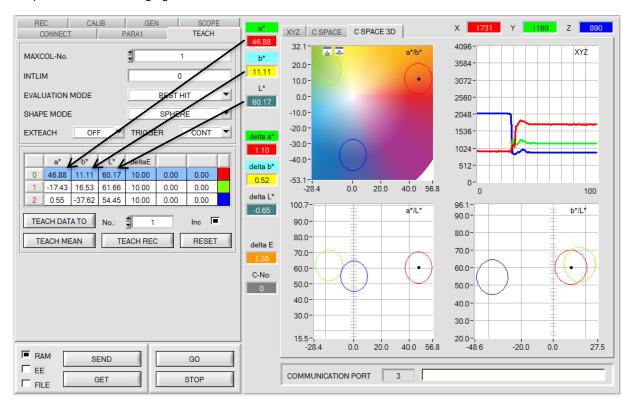
Ein Doppelklick auf das Display öffnet ein größeres Anzeigefenster.

INO:

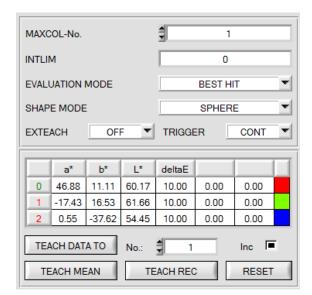
In diesem LED Display wird der Zustand des Eingangs INO visualisiert. Ist die LED schwarz, dann liegt der Eingang auf 0V. Ist die LED grün, dann liegt der Eingang auf +24V.

Das Display ist nur sichtbar, falls der Eingang benutzt wird.

TEMP:


In diesem Display wird die im Sensorgehäuse herrschende Temperatur angezeigt. Die Anzeige entspricht **NICHT** Grad Celsius oder Fahrenheit.

Beachte: Obige Ausgabefelder werden nur bei aktiver Datenübertragung (GO-Taste gedrückt) zwischen PC und dem Sensor aktualisiert.



2.4 Registerkarte TEACH

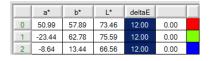
Nach Drücken von **GO** beginnt eine Datenübertragung vom Sensor zum PC. Die Normfarbwerte **X**, **Y**, **Z** und die berechneten Farbkoordinaten und Helligkeitswerte werden in den Displays und Graphikfenster zur Anzeige gebracht.

TEACH:

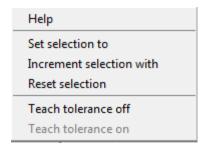
Durch Drücken von **TEACH** öffnet sich eine Ansicht, mit deren Hilfe man Farben in die **TEACH TABLE** einlernen kann.

Beachte: Die Lernfarben müssen dem Sensor durch Drücken von SEND mitgeteilt werden.

Die **TEACH TABLE** ist zeilenweise organisiert, d.h. die einzelnen Parameter für die Lernfarben befinden sich nebeneinander in der jeweiligen Zeile.


Der Sensor kann bis zu 3 Lernfarben kontrollieren. Die Nummer der jeweiligen Lernfarbe wird in der linken Spalte der Tabelle angezeigt.

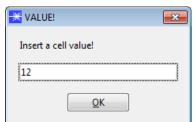
Nur grün markierte Zeilen werden im Sensor zur Auswertung herangezogen. Die Anzahl der zu kontrollierenden Zeilen wird über MAXCOL-No. eingestellt.


Nach Drücken von **TEACH DATA TO** werden die aktuell angezeigten Farbkoordinaten und der Helligkeitswert in die unter **No.:** ausgewählte Zeile der **TEACH TABLE** übertragen. Zusätzlich wird eine Farbtoleranz **(delta E)** gesetzt. Die Toleranzen, wie auch die Lernwerte, können bei Bedarf durch Doppelklick des jeweiligen Feldes mit der linken Maustaste (oder durch Drücken von F2) durch Zahlenwerteingabe mit der PC-Tastatur verändert werden.

Wenn **Inc:** aktiviert ist und die **TEACH DATA TO** Taste gedrückt wird, erfolgt eine automatische Inkrementierung (Erhöhung) des Eingabefeldes **No.**: um 1, d.h. die nächste Zeile in der **TEACH TABLE** wird ausgewählt.

Durch Betätigen von RESET TABLE wird die TEACH TABLE zurückgesetzt (RESET-Wert = 0).

Es besteht die Möglichkeit mehrere Zellen gleichzeitig zu bearbeiten. Dazu müssen die Zellen markiert werden, die geändert werden sollen.


Mit einem rechten Mausklick öffnet sich ein Popup.

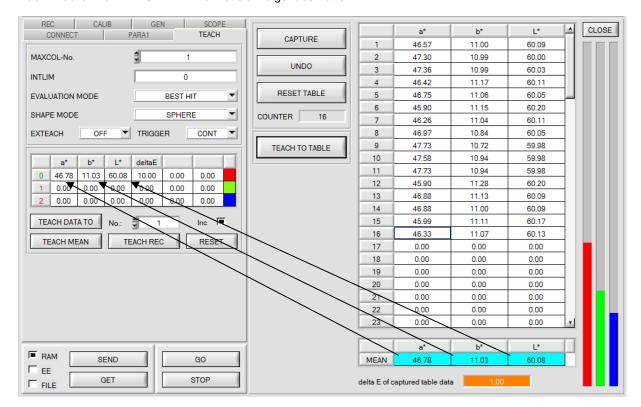
Mit Set selection to kann man mehrere Zellen in der TEACH TABLE mit einem bestimmten Wert auffüllen.

Möchte man auf steigende Toleranzen eingeben, erreicht man dies durch Increment selection with.

Startwert ist die oberste linke Zelle.

Ausgehend von dieser Zelle werden die nachfolgenden um den Wert erhöht, der im Popup eingeben wird.

Mit Reset selection werden die ausgewählten Zellen auf 0 gesetzt.


Die Software schlägt bei **TEACH DATA TO** Toleranzwerte vor und schreibt diese in die Spalte **deltaE**

Diese Funktion kann man über **Teach tolerance off** und **Teach tolerance on** aus- bzw. einschalten.

Nach Drücken von **Help** erscheint ein Popup, in dem die einzelnen Funktionen erklärt werden.

Nach Drücken von TEACH MEAN öffnet sich folgendes Panel.

Nach Drücken von GO werden automatisch Daten vom Sensor geholt und zur Anzeige gebracht.

Durch Drücken von CAPTURE wird ein Parameter Frame in die Tabelle eingetragen.

In dem Anzeigeelement COUNTER wird angezeigt, wie viele Frames schon aufgezeichnet wurden.

Mit **UNDO** kann man die letzten in die Tabelle eingetragenen Frames wieder löschen.

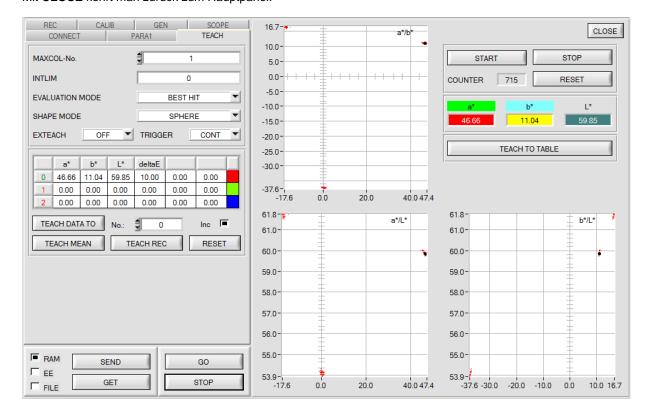
Mit **RESET TABLE** setzt man die ganze Tabelle wieder auf 0.

Nach jedem **CAPTURE**, **UNDO** oder **RESET TABLE** werden automatisch die Mittelwerte für die einzelnen Parameter gebildet, und in der Mittelwert-Tabelle angezeigt.

Zusätzlich wird eine maximale Farb-Abweichung delta E zu den Mittelwerten gebildet.

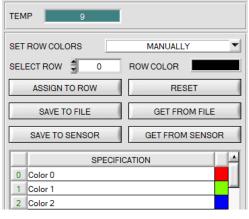
Durch Drücken von **TEACH TO TABLE** werden die entsprechenden Mittelwerte in die unter **No.:** selektierte Zeile der **TEACH TABLE** gelernt.

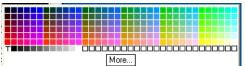
Mit CLOSE kehrt man zurück zum Hauptpanel.



Nach Anklicken des Buttons **TEACH REC VAL** (teach recorded values) wird ein Panel eingeblendet, das nach Drücken von **START** beginnt, Daten aufzuzeichnen und in den drei Graphen darzustellen. Diese Funktion ist dann hilfreich, wenn man dem Sensor das zu detektierende Material nicht direkt vorlegen kann, weil es z.B. auf einem Förderband transportiert wird, das nicht bzw. nicht direkt an der zu lernenden Stelle angehalten werden kann. Nach einiger Zeit kristallisieren sich Flächenschwerpunkte heraus, von denen man ausgehen kann, dass es sich um zu lernende Objekte handelt. Im folgenden Screenshot sind 3 solche Stellen zu erkennen.

Nach Drücken von **STOP** kann man jetzt in irgendeinem Graphen den Cursor auf einen Flächenschwerpunkt positionieren. Der Cursor wird in den beiden anderen Graphen automatisch nachgezogen.


Über **TEACH TO TABLE** kann man nun die aktuell Cursorposition in die **TEACH TABLE** übertragen. Dabei wird in die Zeile gelernt, welche unter **No.**: eingestellt ist.


Mit **RESET** kann man die Graphen und den Counter zurücksetzen. Mit **CLOSE** kehrt man zurück zum Hauptpanel.

2.5 Registerkarte GEN

GEN:

Durch Drücken von **GEN** öffnet sich eine Ansicht, die den aktuell herrschenden Temperaturwert **TEMP** im Sensorgehäuse anzeigt.

Die Anzeige entspricht NICHT Grad Celsius oder Fahrenheit.

In der Registerkarte GEN kann man auch die Zeilenfarbe, mit der die einzelnen Toleranzkreise dargestellt werden, selber auswählen oder diese anhand der vom System detektierten Farbe automatisch setzen lassen.

Zusätzlich kann man in die Tabelle **SPECIFICATION** Bezeichnungen für die einzelne Zeilen eingeben, welche dann auf der Festplatte des PCs hinterlegt werden und bei Bedarf wieder geladen werden können.

Steht **SET ROW COLORS** auf **MANUALLY**, stellt man unter **SELECT ROW** ein, welche Zeilenfarbe geändert werden soll.

Nach Anklicken der farbigen Fläche von **ROW COLOR** öffnet sich eine Farbpalette, in der man die gewünschte Farbe auswählen kann.

Nach Drücken von **ASSIGN TO ROW** wird die Farbe in der 6. Spalte und der ausgewählten Zeile der **TEACH TABLE** zur Anzeige gebracht.

Steht **SET ROW COLORS** auf **AUTOMATICALLY**, so errechnet sich das System die entsprechende Zeilenfarbe selbst, zeigt diese in einem Farb-Display Fenster neben dem Graphen an und setzt nach Drücken von **TEACH DATA TO** diese automatisch in die entsprechende Zeile.

Die Funktionen **SAVE TO FILE** und **GET FROM FILE** ermöglichen es, bestimmte Row Color Arrays und die **SPECIFICATION** Tabelle auf der Festplatte zu speichern bzw. gespeicherte Arrays einzulesen.

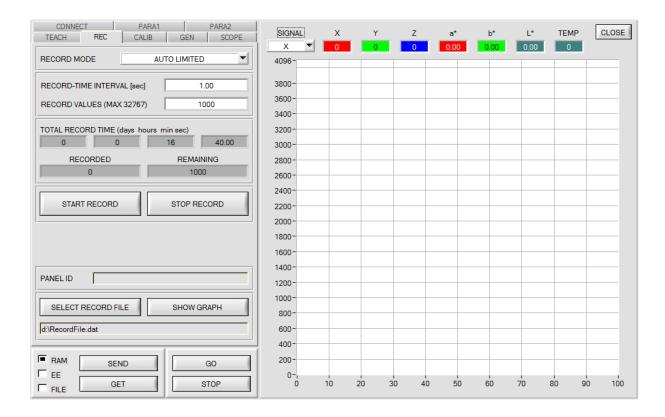
SAVE TO SENSOR und **GET FROM SENSOR** schreibt diese zum Sensor bzw. liest diese vom Sensor.

Mit Hilfe von **RESET** stellt man die Farben auf einen Default Wert zurück.

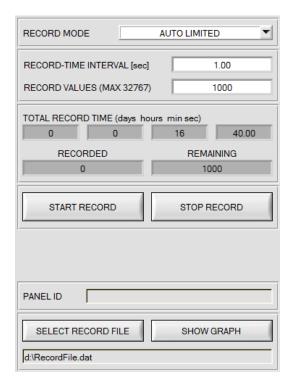
Bei einem Neustart der Software wird automatisch die ROW COLOR Tabelle sowie die SPECIFICATION Tabelle geladen, die beim Verlassen der Software aktuell war.

2.6 Registerkarte REC

Die SPECTRO3-MSM-ANA-Scope Software beinhaltet einen Datenrekorder, welcher es erlaubt die vom Sensor erfassten und berechneten Daten mit einem Zeitstempel abzuspeichern. Das aufgezeichnete File wird auf der Festplatte des PC abgespeichert und kann anschließend mit einem Tabellenkalkulationsprogramm ausgewertet werden.


Führen Sie folgende Schritte durch, um Datenframes mit dem Recorder aufzuzeichnen:

1. Schritt:


Nach Drücken von REC öffnet sich folgendes Fenster:

Nach Drücken von **SHOW GRAPH** erscheint ein Panel, welches dem Benutzer erlaubt die verschiedenen Signale zu monitoren.

Über das DROP DOWN Menü SIGNAL kann zwischen den einzelnen Signalen hin und her geschaltet werden.

2. Schritt:

Zur automatischen Aufzeichnung von mehreren Datenframes wählen Sie AUTO LIMITED unter RECORD MODE aus.

Geben Sie unter **RECORD-TIME INTERVAL [sec]** ein Zeitintervall für die Aufzeichnung ein, im Beispiel wurde 1 gewählt, d.h. jede Sekunde wird ein neuer Frame vom Sensor angefordert.

Geben Sie nun bei **RECORD VALUES [MAX 32767]** ein, wie viele Werte Sie maximal aufzeichnen wollen. Anmerkung: Die Aufzeichnung kann auch vorher durch **STOP RECORD** gestoppt werden, ohne dass die bisher aufgezeichneten Daten verloren gehen.

Bei **TOTAL RECORD TIME** wird in Tagen, Stunden, Minuten und Sekunden angezeigt, wie lange die Aufzeichnung dauert, wenn alle Daten aufgezeichnet werden.

3. Schritt:

Selektieren Sie über **SELECT RECORD FILE** ein File, in welches der Datenframe abgespeichert werden soll.
Sollten Sie einen bereits existierenden Filenamen auswählen, werden Sie gefragt, ob Sie das bestehende File überschreiben wollen oder nicht.

4. Schritt:

Durch Drücken von START RECORD starten Sie die automatische Aufzeichnung der Daten.

Der Recorder beginnt mit der Aufzeichnung. Dabei wird der Button **START RECORD** rot eingefärbt als Zeichen für eine aktive Aufzeichnung.

Die jeweiligen Datenframes werden in den Anzeigefenstern zur Ansicht gebracht.

Zusätzlich können Sie in den beiden Anzeigefenstern **RECORDED** und **REMAINING** kontrollieren, wie viele Datenframes schon aufgezeichnet wurden und wie viele noch aufzuzeichnen sind.

Beachte:

Während der Aufzeichnung sind die beiden Eingabefelder RECORD-TIME INTERVAL und VALUES TO BE RECORDED inaktiv.

5 Schritt

Nachdem so viele Datenframes wie unter **RECORD VALUES [MAX 32767]** eingestellt aufgezeichnet worden sind bzw. durch Drücken von **STOP AUTO RECORD** erscheint ein Pop-up-Fenster, welches das Speichern des Files bestätigt.

Wenn Sie eine unbegrenzte Anzahl von Daten aufzeichnen wollen, wählen Sie unter **RECORD MODE** die Funktion **AUTO UNLIMITED**. Selektieren Sie ein gewünschtes Aufzeichnungsintervall und drücken Sie **START RECORD**.

Wenn Sie Daten "von Hand" aufzeichnen wollen, wählen Sie unter RECORD MODE die Funktion MANUAL RECORDING aus.

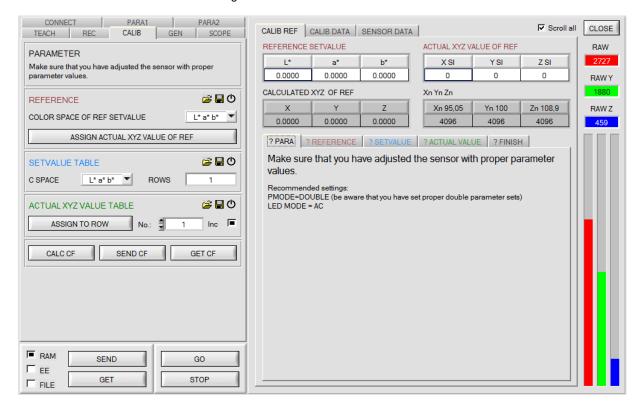
Über **GO** beginnen Sie Daten vom Sensor einzulesen. Diese Daten werden in dem Anzeigefenster visualisiert. Durch Drücken von **CAPTURE DATA FRAME** wird ein Datenframe in das unter **SELECT RECORD FILE** ausgewählte File abgespeichert. In **RECORDED** wird die Summe der bereits aufgezeichneten Frames angezeigt.

Ist unter **RECORD MODE AUTO TRIGGERED** ausgewählt und unter **TRIGGER = EXT1, EXT2** oder **TRANS**, wird nach Drücken von **START RECORD** der Sensor dazu veranlasst, nach jedem Abfall des Triggers selbstständig einen Datenframe zu senden. Dieser Datenframe wird vom Rekorder erfasst und aufgezeichnet. Mit **STOP RECORD** wird das automatische Senden des Sensors wieder beendet.

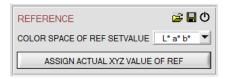
Hinweis:

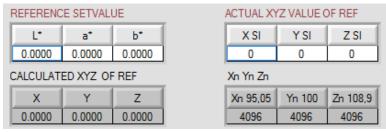
Nach Drücken von START RECORD wird das File, welches unter SELECT RECORD FILE ausgewählt ist, gelöscht. Bei RECORD FRAME MANUALLY wird das File sofern es noch nicht besteht erzeugt. Sollte das File schon bestehen, werden die Daten an das bestehende File angehängt.

2.7 Registerkarte CALIB


2.7.1 Kalibrierung

Die Sensoren sind ab Werk kalibriert. Stellt man den Parameter CALIB auf FCAL (Factory CALibration), dann arbeitet der Sensor mit dieser werksseitigen Kalibrierung


Alternativ kann der Benutzer den Sensor selber auf verschiedene Oberflächen kalibrieren (User CALibration). Wählt man CALIB=UCAL, arbeitet der Sensor mit dieser vom Benutzer erstellten Kalibrierung.


Der Kalibrierung wird mit Hilfe verschiedener Oberfläche durchgeführt, von denen die Farbkoordinaten und er Helligkeitswert bekannt sind. Alternativ dazu ist eine ColorCheckerTM Tabelle erhältlich. Diese verfügt über 24 Farbfelder nach der CIE-NORM.

Nach Drücken von CALIB öffnet sich folgendes Fenster:

Folgende Aktionen müssen der Reihe nach durchgeführt werden:

- Dem Sensor muss eine weiße Referenzoberfläche vorgelegt werden.
- Durch Drücken von GO startet man den Datenaustausch zwischen Sensor und PC Oberfläche
- POWER, GAIN und INTEGRAL müssen so eingestellt werden, dass das stärkste Signal von RAW X, Y, Z ca.
- Wichtig ist, dass der Farbraum C SPACE OF REF SETVALUE richtig gewählt ist.
- Die Farbkoordinaten und der Helligkeitswert der Referenzoberfläche müssen bekannt sein und in die Tabelle REFERENCE SETVALUE eingetragen werden. Die dazu gehörigen Normfarbwerte X, Y, Z werden automatisch berechnet und in die Tabelle CALCULATED XYZ OF REF geschrieben.
- Mit ASSIGN ACTUAL XYZ VALUE OF REF werden die vom Sensor errassten Normfarbwerte RAW X, Y, Z in die Tabelle ACTUAL XYZ VALUE OF REF übertragen und es werden automatisch die Normfarbwerte Xn, Yn, Zn eines vollkommen mattweißen Körpers berechnet.
- Xn, Yn, Zn werden zur Berechnung der Farbkoordinaten und des Helligkeitswertes in fast allen Farbräumen benötigt.

Mit dem File und Disk Symbol kann man die REFERENCE Einstellungen in eine Datei schreiben oder davon lesen. Durch Drücken auf das Reset Symbol werden die Tabellen zurückgesetzt.

CETYAL HE TABLE

SETVALUE TABLE					
	L*	a*	b*	٨	
1	38.0800	12.0900	14.3900		
2	66.3800	13.2200	17.1400		
3	51.0600	0.3800	-22.0600		
4	43.3000	-16.5200	21.4600		
5	56.3600	12.8400	-25.2900		
6	71.6000	-30.7100	1.1700		
7	61.7000	27.5400	58.2300		
8	41.2200	17.9500	-43.1600	-	
9	51.5700	43.0000	14.7500		
10	30.7700	25.7400	-23.3800		
11	72.5800	-28.1700	58.6100		
12	71.6000	12.4500	66.5800		

Damit man den Sensor Kalibrieren kann, braucht man eine Anzahl verschiedener Oberflächen.

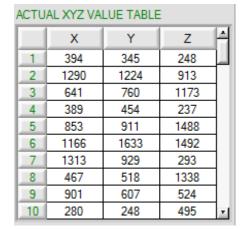
Die Anzahl der Oberflächen wird in ROWS eingegeben.

Außerdem muss man die Farbkoordinaten und Helligkeitswerte

Diese müssen in die Tabelle SETVALUE TABLE eingetragen werden

Der entsprechende Farbraum wird unter C SPACE eingegeben.

Mit dem File und Disk Symbol kann man die SETVALUE Einstellungen in eine Datei schreiben oder davon lesen. Durch Drücken auf das Reset Symbol werden die Tabellen zurückgesetzt.



Jetzt werden die den **SETVALUES** entsprechenden Oberflächen dem Sensor vorgelegt.

Die vom Sensor aktuell ermittelten Normfarbwerte RAW X, Y, Z werden über ASSIGN TO ROW in die unter No.: selektierte Zeile in die Tabelle ACTUAL XYZ VALUE TABLE übertragen.

Mit dem File und Disk Symbol kann man die **ACTUAL XYZ VALUE TABLE** in eine Datei schreiben oder davon lesen. Durch Drücken auf das Reset Symbol werden die Tabellen zurückgesetzt.

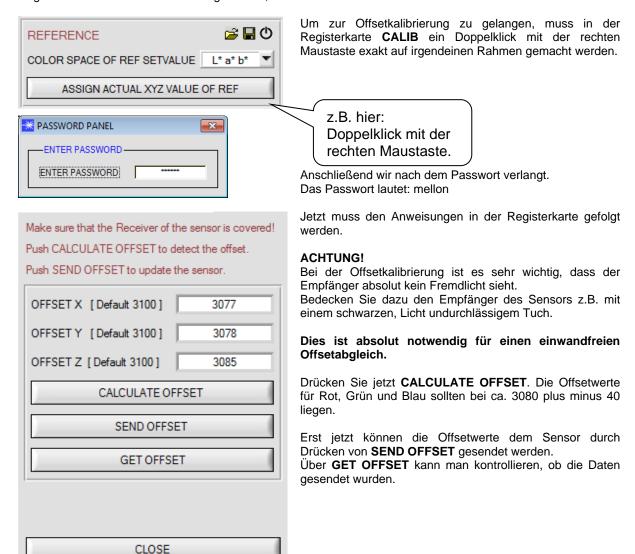
Durch Drücken von CALC CF werden aus den Tabellen SETVALUE TABLE und ACTUAL XYZ VALUE TABLE die entsprechenden Kalibrierungsfaktoren berechnet.

SEND CF hinterlegt die Tabellen **ACTUAL XYZ VALUE TABLE** und berechneten Kalibrierungsfaktoren im EEPROM des Sensors.

Über **GET CF** werden die im Sensor hinterlegten Tabellen sowie die Referenzparameter und die Weißlicht-Kalibrierungsfaktoren im Reiter **SENSOR DATA** angezeigt.

Bei **CALIB=UCAL WB** oder **FCAL WB**, dann kann man über den Eingang INO einen Weißlichtabgleich durchführen. Dazu muss die bei der Kalibrierung verwendete Referenzoberfläche vorm Sensor platziert werden und der Eingang INO betätigt werden.

Die errechneten Weißlicht-Kalibrierungsfaktoren werden in der Tabelle CALIB FACTORS OF WHITE BALANCE im Reiter SENSOR DATA angezeigt.


Um die Weißlichtkalibrierungsfaktoren für CALIB=UCAL WB zu erhalten muss in der Registerkarte CALIB auf GET CF gedrückt werden.

Um die Weißlichtkalibrierungsfaktoren für CALIB=FCAL WB zu erhalten muss man auf den Rahmen in dem sich GET CF befindet einen Doppelklick mit der rechten Maustaste machen und als Passwort GETCF eingeben.

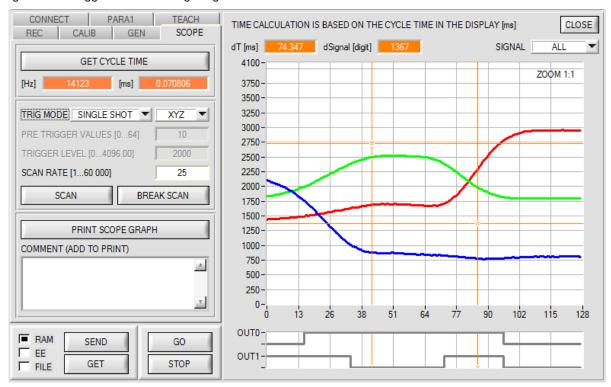
2.7.2 Offsetkalibrierung

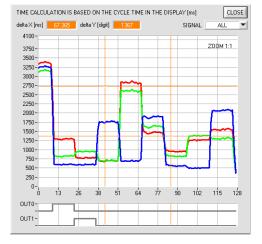
Damit beim Verwenden der Integralfunktion (Parameter **INTEGRAL**) nicht der elektronische Offset verstärkt wird, kann dieser durch eine Offsetkalibrierung bzw. Nullpunktkalibrierung, eliminiert werden. Die dazu notwendige Registerkarte ist durch ein Passwort geschützt, damit nicht versehentlich etwas verstellt werden kann.

2.8 Registerkarte SCOPE

In der Registerkarte SCOPE wurde ein Oszilloskop nachgebildet.

Angezeigt werden abhängig von **TRIG MODE** die Signale **XYZ**, der Farbraum, das ausgegebene Analogsignal (abhängig von der Einstellung in **ANA OUT**) sowie der Zustand der digitalen Ausgänge.


Durch Drücken von **GET CYCLE TIME** erhält man die aktuelle Sensor Scanfrequenz in **[Hz]** und **[ms]**. Die aktuelle Scanfrequenz muss ermittelt werden, damit **deltaX[ms]** richtig ermittelt werden kann. Man muss dem Sensor zur Ermittlung der richten Scanfrequenz 8 Sekunden Zeit geben, bevor man **GET CYCLE TIME** betätigt. Im **TRIG MODE = SINGLE SHOT** wird nach Drücken von **SCAN** ein Datenframe aufgezeichnet und im Graphen zur Anzeige gebracht.


Im TRIG MODE = FALLING EDGE und RISING EDGE kann man eine getriggerte Aufzeichnung mit Drücken von SCAN starten. Dabei hat man die Möglichkeit über TRIGGER LEVEL einen Trigger-Start festzulegen.

Getriggert wird entweder auf **Z** oder den Helligkeitswert des Farbraums, je nachdem welches Signal aufgezeichnet werden soll. Dies ist im Graphen die blaue Linie.

Im **TRIG MODE= INTERN C-No.0** startet die Aufzeichnung selbständig, sobald C-No. 0 erkannt wird. Über **TRIG MODE= EXTERN IN0** startet man die Aufzeichnung von extern über den Eingang IN0.

Über **SCAN-RATE** kann man die Aufzeichnung verzögern oder beschleunigen. Dies entspricht, dem bei einem Oszilloskop bekannten TIMEBASE. Über **PRE TRIGGER VALUES** legt man fest, wie viele Werte vorm eigentlichen Trigger-Start noch angezeigt werden sollen.

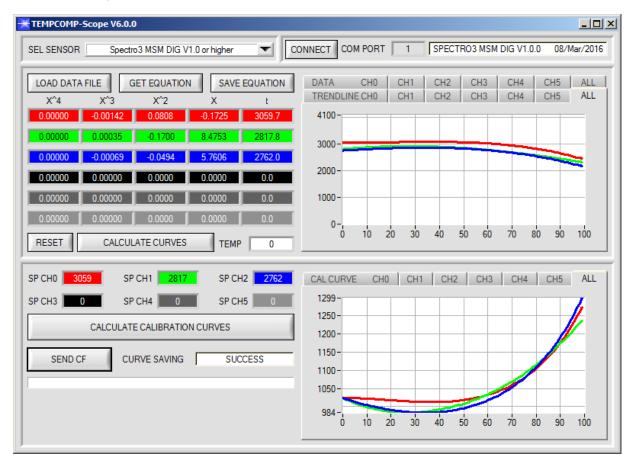
Durch Halten der Steuerungstaste Strg (CTRL) und Aufziehen eines Fensters mit der Maus im Graphen kann in den Graphen gezoomt werden.

Mit **ZOOM 1:1** wird die Zoomfunktion wieder aufgehoben.

Die beiden orangen Cursor können mit der Maus verschoben werden. Dabei werden die Displays **deltaX[ms]** und **deltaY[digit]** aktualisiert.

deltaX[ms] zeigt die Zeit zwischen den Cursor in X-Richtung. **deltaY[digit]** zeigt die Differenz der beiden Cursor in Y-Richtung in Digit.

Unter SIGNAL kann man einzelne Kurven darstellen.


Mit PRINT SCOPE GRAPH wird der aktuelle Bildschirm, zusammen mit dem Text der im Textfeld COMMENT steht, ausgedruckt.

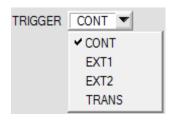
3. Bedienung der TEMPCOMP-Scope Software

Sollte bei einem Firmwareupdate etwas schief gehen, so dass die im EEPROM gespeicherten Temperaturkennlinien verloren gegangen sind, dann ist es notwendig, diese Kennlinien wieder zu erstellen. Dazu benötigen Sie ein File mit den entsprechenden Daten. Dieses File erhalten Sie von Ihrem Lieferanten.

Zur Temperaturkompensation starten Sie bitte die entsprechende, auf der CD mitgelieferte Software **TEMPCOMP-Scope.** Bitte stellen Sie sicher, dass Sie mit dem Sensor verbunden sind. Eventuell müssen Sie die Verbindung über **CONNECT** auswählen. Stellen Sie unter **SELECT SENSOR** den richtigen Sensor ein, sofern dies nicht automatisch erfolgt.

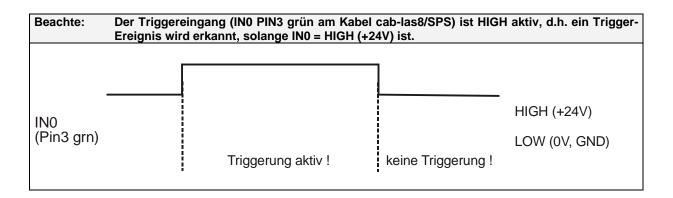
- 1. Schritt: Laden Sie jetzt über **GET EQUATION** oder **LOAD DATA FILE** das Temperaturkompensations-File, welches Sie von Ihrem Lieferanten erhalten haben.
- 2. Schritt: Drücken Sie CALCULATE CURVES, um die Daten im Graphen anzuzeigen.
- 3. Schritt: Wählen Sie die sensorinterne Betriebstemperatur (nicht in °C), welche der Sensor bei einer Umgebungstemperatur von 20° hat, fall diese nicht schon automatisch geschehen ist. Der Wert müsste in der File-Bezeichnung enthalten sein.
- 4. Schritt: Drücken Sie CALCULATE CALIBRATION CURVES, um die Ausgleichsgeraden zu berechnen.
- 5. Schritt: Mit Drücken von **SEND CF** werden die Ausgleichsgeraden im **EEPROM** des Sensors abgelegt.
- 6. Schritt: Eine erfolgreiche Temperaturkompensation sehen Sie, wenn der Status SUCCESS angezeigt wird.

Anmerkung! Wenn Sie das Temperaturkompensations-File nicht gleich zur Hand haben, dann starten Sie einfach die TEMPCOMP-Scope Software. Bauen Sie eine Verbindung auf, soweit noch nicht vorhanden, und drücken Sie einfach **SEND-CF**. Der Sensor funktioniert jetzt wie gehabt, ist jedoch nicht temperaturkompensiert.



4. Externe Triggerung der SPECTRO-3-MSM-ANA Farbsensoren

Die externe Triggerung erfolgt über Pin Nr. 3 (grn) an der 8-pol. Buchse der SPECTRO-3-MSM-ANA/SPS Steckverbindung.


TRIGGER:

Zunächst muss der externe Trigger-Modus am Farbsensor eingestellt werden. Hierzu muss im **TRIGGER** Auswahlfeld die Option **EXT1**, **EXT2** oder **TRANS** angewählt werden.

Beachte:

Erst nach Anklicken der SEND Taste wird die neue Einstellung im Sensor aktiviert!

5. Anschlussbelegung der SPECTRO-3-MSM-ANA Farbsensoren

Anschluss SPECTRO-3-MSM-ANA an PC:

	4-pol. M5 Buchse (Typ Binder 707) SPECTRO-3-MSM-ANA/PC-RS232	2 1
Pin-Nr.:		Belegung:
1		+24VDC (+Ub)
2		0V (GND)
3		Rx0
4		Tx0

Anschluss SPECTRO-3-MSM-ANA an SPS:

	8-pol. Buchse SPECTRO-3		1 7		
Pin-Nr.:	Farbe:	Belegung:			
1	weiß	0V (GND)			
2	braun		+24VDC	(± 10%)	
3	grün		IN	10	
4	gelb	OUT0	Digital 0: typ. 0 1V	, Digital 1: typ. +U	lb – 10%
5	grau	OUT1	Digital 0: typ. 0 1V	, Digital 1: typ. +U	lb – 10%
6	rosa	OUT2 Analog X, x, a*, u*, u' oder C* (010V oder 420mA)			
7	blau	OUT3 Analog Y, y, b*, v*, v' oder h* (010V oder 420mA)			
8	rot	OUT4	Analog Z, Y oder L*	(010V	oder 420mA)

6. RS232 Schnittstellenprotokoll

The sensors of the SPECTRO-3-MSM-ANA series operate with the following **parameters** that are sent to the sensor or read from the sensor in the stated sequence.

Info! 1 bytes = 8bit 1 word = 2 byte 1 long = 2 word = 4 byte

	Parameter	Type	Meaning		
Para1:	POWER	word	Transmitter intensity (0 1000) Attention intensity in thousandth!		
Para2:	PMODE	word	Power Mode: SINGLE, DOUBLE coded to (0,1)		
Para3:	GAIN	word	Amplification of the integrated receiver AMP1, AMP2, AMP3, AMP4, AMP5, AMP6,		
			AMP7, AMP8 coded to (1, 2, 3, 4, 5, 6, 7, 8)		
Para4:	INTEGRAL	word	Signal integration (1250)		
Para5:	AVERAGE	word	Signal averaging 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384 or 32768		
Para6:	LED MODE	word	Control for the internal light source DC, AC coded to (0,1)		
Para7:	C SPACE	word	Color Space: xyY, L*a*b*, L*u*v*, L*C*h*, L*u'v' coded to (0,1,2,3,4)		
Para8:	CALIB	word	Calibration Mode: OFF, FCAL, UCAL, FCAL WB, UCAL WB coded to (0,1,2,3,4)		
Para9:	DIGITAL OUTMODE	word	Function of the digital output: OFF, DIRECT HI, DIRECT LO, BINARY HI, BINARY LO coded to (0,1,2,3,4)		
Para10:	MAXCOL-No.	word	Number of the colours (1,2,3)		
Para11:	INTLIM	word	Intensity limit (0 4095)		
Para12:	EVALUATION MODE	word	Evaluation mode: FIRST HIT, BEST HIT coded to (0,1)		
Para13:	SHAPE MODE	word	Shape mode: Block, Cylinder, Sphere codet to (0,1,2)		
Para14:	EXTEACH	word	External teach mode: OFF, ON coded to (0,1)		
Para15:	TRIGGER	word	Trigger mode: CONT, EXT1, EXT2, TRANS coded to (0, 1, 2, 3)		
Para16:	ANALOG OUTMODE	word	Function of the analogue outmode: OFF, X Y Z, COLOR SPACE, CS REF coded to (0,1,2,3)		
Para17:	ANA OUT SIGNAL	Word	Function of the analog output: U, I coded to (0,1)		
Para18:	ANA OUT	word	Function of analogue out: CONT, IN0 L>H coded to (0,1)		
Para19:	ANA ZOOM	word	Zoom factor at ANALOG OUTMODE = CS REF: x1, x2, x4, x8, x16, x32, x64, x128 Coded to (0,1,2,3,4,5,6,7)		
Para20:	POWER DP1	word	Transmitter intensity of Double Parameter Set 1 (0 1000) Attention intensity in thousandth!		
Para21:	GAIN DP1	word	Amplification of the integrated receiver of Double Parameter Set 1 AMP1, AMP2, AMP3, AMP4, AMP5, AMP6, AMP7, AMP8 coded to (1, 2, 3, 4, 5, 6, 7, 8)		
Para22:	INTEGRAL DP1	word	Signal integration of Double Parameter Set1 (1250)		
Para23:	POWER DP2	word	Transmitter intensity of Double Parameter Set 2 (0 1000) Attention intensity in thousandth!		
Para24:	GAIN DP2	word	Amplification of the integrated receiver of Double Parameter Set 2 AMP1, AMP2, AMP3, AMP4, AMP5, AMP6, AMP7, AMP8 coded to (1, 2, 3, 4, 5, 6, 7, 8)		
Para25:	INTEGRAL DP2	word	Signal integration of Double Parameter Set2 (1250)		
Para26:	COR VAL X	word	Correction Value for X multiplied by 128		
Para27:	COR VAL X	word	Correction Value for Y multiplied by 128		
Para28:	COR VAL Z	word	Correction Value for Z multiplied by 128		
Para29:	COR VAL X 3'rd root	word	3'rd root of COR VAL X = (COR VAL X * 128)^(1/3) * 1024		
Para30:	COR VAL X 3'rd root	word	3'rd root of COR VAL X = (COR VAL X 128)*(1/3) 1024		
Para31:	COR VAL 7 31d 100t	word	3'rd root of COR VAL 7 = (COR VAL 7 128) (1/3) 1024		
raiasi.	CON VAL Z 3 IU 1001	word	314 1001 01 001 VAL Z = (OON VAL Z 120) (1/3) 1024		

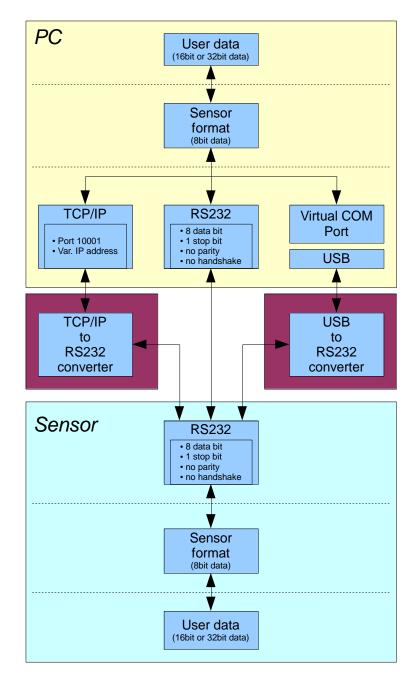
One row in the Teach Table determines a **TEACH VECTOR**.

The sensors of the SPECTRO-3-MSM-ANA series operate with 3 **TEACH VECTORS** that are sent to the sensor or read from the sensor in one block in the stated sequence.

Info! 1 bytes = 8bit 1 word = 2 byte 1 long = 2 word = 4 byte

Т	EACH VECTOR	Туре	Meaning
TeachVal1:	Teach Table Row 0 Column 0	long	x, a*, u*, u' of row 0. Must be multiplied with 65536.
TeachVal2:	Teach Table Row 0 Column 1	long	y, b*, v*, v' of row 0. Must be multiplied with 65536.
TeachVal3:	Teach Table Row 0 Column 2	long	Y, L*, L*, L*of row 0. Must be multiplied with 65536.
TeachVal4:	Teach Table Row 0 Column 3	long	Shape mode Block: xTol or a*Tol or u*Tol or u' Tol of row 0.
			Shape mode Cylinder: xyTol or a*b*Tol or u*v*Tol or u'v' Tol of row 0.
			Shape mode Sphere: CTO or deltaE of row 0.
			Must be multiplied with 65536.
			Must be sent as a dummy if not needed.
TeachVal5:	Teach Table Row 0 Column 4	long	Shape mode Block: yTol or b*Tol or v*Tol or v' Tol of row 0.
			Shape mode Cylinder: YTol or L*Tol of row 0.
			Shape mode Sphere: no use.
			Must be multiplied with 65536.
			Must be sent as a dummy if not needed.
TeachVal6:	Teach Table Row 0 Column 5	long	Shape mode Block: YTol or L*Tol of row 0.
			Shape mode Cylinder: no use.
			Shape mode Sphere: no use.
			Must be multiplied with 65536.
			Must be sent as a dummy if not needed.
TeachVal7:	Free	word	Send 0 as dummy
TeachVal8:	Free	word	Send 0 as dummy
TeachVal9:	Free	word	Send 0 as dummy
TeachVal10:	Free	word	Send 0 as dummy
TeachVal11:	Teach Table Row 1 Column 0	long	x, a*, u*, u' of row 1. Must be multiplied with 65536.
TeachVal12:	Teach Table Row 1 Column 1	long	y, b*, v*, v' of row 1. Must be multiplied with 65536.
TeachVal13:	Teach Table Row 1 Column 2	long	Y, L*, L*, L*of row 1. Must be multiplied with 65536.
TeachVal14:	Teach Table Row 1 Column 3	long	Shape mode Block: xTol or a*Tol or u*Tol or u' Tol of row 1.
			Shape mode Cylinder: xyTol or a*b*Tol or u*v*Tol or u'v' Tol of row 1.
			Shape mode Sphere: CTO or deltaE of row 1.
			Must be multiplied with 65536.
Topole Vold Fr	Tanah Tahla Daw 4 Calvers 4	lana.	Must be sent as a dummy if not needed.
TeachVal15:	Teach Table Row 1 Column 4	long	Shape mode Block: yTol or b*Tol or v*Tol or v' Tol of row 1.
			Shape mode Cylinder: YTol or L*Tol of row 1. Shape mode Sphere: no use.
			Must be multiplied with 65536.
			Must be sent as a dummy if not needed.
TeachVal16:	Teach Table Row 1 Column 5	long	Shape mode Block: YTol or L*Tol of row 1.
icaciivaiio.	reach rable Now 1 Column 5	long	Shape mode Cylinder: no use.
			Shape mode Sphere: no use.
			Must be multiplied with 65536.
			Must be sent as a dummy if not needed.
TeachVal17:	Free	word	Send 0 as dummy
TeachVal30	Free	word	Send 0 as dummy
			,

Upon request, the data acquired and processed by the sensor are sent by the sensor in the following sequence. Info! 1 bytes = 8bit 1 word = 2 byte 1 long = 2 word = 4 byte


DATA VALUE Typ		Type	Meaning
DatVal1:	CSX	long	Color Space X chromaticity coordinate (x, a*, u*, C* or u'). Must be divided by 65536.
DatVal2:	CSY	long	Color Space Y chromaticity coordinate (y, b*, v*, h* or v'). Must be divided by 65536.
DatVal3:	CSI	long	Color Space Lightness variable (Y or L*). Must be divided by 65536.
DatVal4:	REF CSX	long	Reference CSX when ANALOG OUTMODE = CS REF. Must be divided by 65536.
DatVal5:	REF CSY	long	Reference CSY when ANALOG OUTMODE = CS REF. Must be divided by 65536.
DatVal6:	REF CSI	long	Reference CSI when ANALOG OUTMODE = CS REF. Must be divided by 65536.
DatVal7:	delta E	long	Color difference to a color hit. Must be divided by 65536.
DatVal8:	X	word	Calibrated and temperature compensated tristimulus value of channel X
DatVal9:	Υ	word	Calibrated and temperature compensated tristimulus value of channel Y
DatVal10:	Z	word	Calibrated and temperature compensated tristimulus value of channel Z
DatVal11:	RAW X	word	None Calibrated tristimulus value of channel X
DatVal12:	RAW Y	word	None Calibrated tristimulus value of channel Y
DatVal13:	RAW Z	word	None Calibrated tristimulus value of channel Z
DatVal14:	C-No:	word	Detected color
DatVal15:	DIG IN	word	DIG IN is 1 when input IN0 is HI
DatVal16:	TEMP	word	Temperature in the sensor (not in °C or °F)
DatVal17:	DP SET	word	Double Parameter Set

Digital serial communication is used for the exchange of data between the software running on the PC and the sensor.

For this purpose the control unit features an EIA-232 compatible interface that operates with the (fixed) parameters "8 data bits, 1 stop bit, no parity bit, no handshake".

Five values are available for the baudrate: 9600baud, 19200baud, 38400baud, 57600baud and 115200baud. As an option the PC software also can communicate through TCP/IP or USB. In these cases transparent interface converters must be used that allow a connection to the RS232 interface.

A proprietary protocol format that organises and bundles the desired data is used for all physical connection variants between PC software and control unit. Depending on their type and function the actual data are 16- or 32-bit variables and represent integer or floating-point values. The protocol format consists of 8-bit wide unsigned words ("bytes"). The actual data therefore sometimes must be distributed to several bytes.

The control unit always behaves passively (except if another behaviour has been specifically activated). Data exchange therefore always is initiated by the PC software. The PC sends a data package ("frame") corresponding to the protocol format, either with or without appended data, to which the control unit responds with a frame that matches the request.

The protocol format consists of two components:

A "header" and an optional appendant ("data").

The header always has the same structure.

The first byte is a synchronisation byte and always is 85_{dez} (55_{hex}).

The second byte is the so-called order byte. This byte determines the action that should be performed (send data, save data, etc.).

A 16-bit value (argument) follows as the third and fourth byte. Depending on the order, the argument is assigned a corresponding value.

The fifth and sixth byte again form a 16-bit value. This value states the number of appended data bytes. Without appended data both these bytes are 0_{dez} or 00_{hex} , the maximum number of bytes is 512.

The seventh byte contains the CRC8 checksum of all data bytes (data byte 0 up to and incl. data byte n).

The eight byte is the CRC8 checksum for the header and is formed from bytes 0 up to and incl. 6.

The header always has a total length of 8 bytes. The complete frame may contain between 8 and 520 bytes.

Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8	Byte9		Byte n+6	Byte n+7
Header	Header	Header	Header	Header	Header	Header	Header	Data	Data	•••	Data	Data
0x55	<order></order>	<arg></arg>	<arg></arg>	<len></len>	<len></len>	CRC8	CRC8	Data1	Data1		Data n/2	Data n/2
UXSS	<ur><ur><ur><ur><</ur></ur></ur></ur>	(lo byte)	(hi byte)	(lo byte)	(hi byte)	(Data)	(Header)	(lo byte)	(hi byte)	•••	(lo byte)	(hi byte)

The following orders can be sent to the sensor.

Number	ORDER (header byte no. 2)	Example
0	Sensor answers with order=0 if a communication error occurs.	
	ARG=1: Invalid order number was sent to the sensor	
	ARG=2: General communication error (wrong baudrate, overflow,)	
1	Write parameter to the RAM of the sensor	order=1
2	Read parameter from the RAM of the sensor	order=2
3	Load parameter and actual Baudrate from RAM to EEPROM of the sensor	order=3
4	Load parameter from EEPROM to RAM of the sensor	order=4
5	Read CONNECTION OK and serial number from sensor	order=5
6	Free	
7	Read Firmware String and firmware number from sensor	order=7
8	Read data values from sensor	order=8
108	Read 3 data values from sensor	order=108
30	Start and Stop triggered sending of data frames	order=30
105	Get cycle time from sensor	order=105
190	Write new baud rate to the sensor	order=190

CRC8 checksum

The so-called "Cyclic Redundancy Check" or CRC is used to verify data integrity. This algorithm makes it possible to detect individual bit errors, missing bytes, and faulty frames. For this purpose a value - the so-called checksum - is calculated over the data (bytes) to be checked and is transmitted together with the data package. Calculation is performed according to an exactly specified method based on a generator polynomial. The length of the checksum is 8 bit (= 1 byte). The generator polynomial is: $X^8 + X^5 + X^4 + X^0$

To verify the data after they have been received, CRC calculation is performed once again. If the sent and the newly calculated CRC values are identical, the data are without error.

The following pseudo code can be used for checksum calculation:

table[]

lable	<u> </u>														
0	94	188	226	97	63	221	131	194	156	126	32	163	253	31	65
157	195	33	127	252	162	64	30	95	1	227	189	62	96	130	220
35	125	159	193	66	28	254	160	225	191	93	3	128	222	60	98
190	224	2	92	223	129	99	61	124	34	192	158	29	67	161	255
70	24	250	164	39	121	155	197	132	218	56	102	229	187	89	7
219	133	103	57	186	228	6	88	25	71	165	251	120	38	196	154
101	59	217	135	4	90	184	230	167	249	27	69	198	152	122	36
248	166	68	26	153	199	37	123	58	100	134	216	91	5	231	185
140	210	48	110	237	179	81	15	78	16	242	172	47	113	147	205
17	79	173	243	112	46	204	146	211	141	111	49	178	236	14	80
175	241	19	77	206	144	114	44	109	51	209	143	12	82	176	238
50	108	142	208	83	13	239	177	240	174	76	18	145	207	45	115
202	148	118	40	171	245	23	73	8	86	180	234	105	55	213	139
87	9	235	181	54	104	138	212	149	203	41	119	244	170	72	22
233	183	85	11	136	214	52	106	43	117	151	201	74	20	246	168
116	42	200	150	21	75	169	247	182	232	10	84	215	137	107	53

Example order=1: Write parameter to the RAM of the sensor.

SET ARG=2 if you want to send the Teach Values.

Example is with 5 parameter (Para1=500, Para2=0; Para3=3200, Para4=3300, Para5=1) Have a look at the **TABLE PARAMETER** to check out how much parameter you have to send.

DATA FRAME PC → Sensor

Byte1 Header	Byte2 Header	Byte3 Header	Byte4 Header	Byte5 Header	Byte6 Header	Byte7 Header	Byte8 Header
0x55	<order></order>	<arg> (lo byte)</arg>	<arg> (hi byte)</arg>	<len> (lo byte)</len>	<len> (hi byte)</len>	CRC8 (Data)	CRC8 (Header)
85 (dec)	1	0	0	10	0	130	107
		ΔR(3-0	I FN-	-10		

Byte9	Byte10	Byte11	Byte12	Byte13	Byte14	Byte15	Byte16	Byte17	Byte18
Data	Data	Data	Data	Data	Data	Data	Data	Data	Data
Para1	Para1	Para2	Para2	Para3	Para3	Para4	Para4	Para5	Para5
(lo byte)	(hi byte)	(lo byte)	(hi byte)	(lo byte)	(hi byte)	(lo byte)	(hi byte)	(lo byte)	(hi byte)
244	1	0	0	128	12	228	12	1	0
Para1=500		=500 Para2=0		Para3	3=3200 Para4=3300		Para	ara5=1	

DATA FRAME Sensor → PC

Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8
Header	Header	Header	Header	Header	Header	Header	Header
0x55	.ordor	<arg></arg>	<arg></arg>	<len></len>	<len></len>	CRC8	CRC8
UXSS	<order></order>	(lo byte)	(hi byte)	(lo byte)	(hi byte)	(Data)	(Header)
85 (dec)	1	0	0	0	0	170	224
		ARO	G=0	LFI	N=0		

If you receive an argument greater 0, ARG parameter where out of range and have been set to a default value.

Example order=2: Read parameter from the RAM of the sensor.

SET ARG=2 if you want to read the Teach Values.

Example is with 5 parameter (Para1=500, Para2=0; Para3=3200, Para4=3300, Para5=1) Have a look at the **TABLE PARAMETER** to check out how much parameter you will receive.

DATA FRAME PC → Sensor

	Byte1 Header	Byte2 Header	Byte3 Header	Byte4 Header	Byte5 Header	Byte6 Header	Byte7 Header	Byte8 Header
	0x55	<order></order>	<arg> (lo byte)</arg>	<arg> (hi byte)</arg>	<len> (lo byte)</len>	<len> (hi byte)</len>	CRC8 (Data)	CRC8 (Header)
ſ	85 (dec)	2	0	0	0	0	170	185
			ARO	G=0	LFI	N=0		

DATA FRAME Sensor → PC

Ī	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8
١	Header	Header	Header	Header	Header	Header	Header	Header
ſ	0x55	<order></order>	<arg></arg>	<arg></arg>	<len></len>	<len></len>	CRC8	CRC8
	UXSS	<order></order>	(lo byte)	(hi byte)	(lo byte)	(hi byte)	(Data)	(Header)
Ī	85 (dec)	2	0	0	10	0	130	50
			ARO	G=0	LEN:	=10		

Byte9	Byte10	Byte11	Byte12	Byte13	Byte14	Byte15	Byte16	Byte17	Byte18
Data									
Para1	Para1	Para2	Para2	Para3	Para3	Para4	Para4	Para5	Para5
(lo byte)	(hi byte)								
244	1	0	0	128	12	228	12	1	0
Para1=500		Para	a2=0	Para3	=3200	Para4	=3300	Para	15=1

Example order=3: Load parameter and actual Baudrate from RAM to EEPROM of the sensor.

DATA FRAME PC → Sensor

Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7
Header	Header	Header	Header	Header	Header	Header	Header
OvEE	.ordor	<arg></arg>	<arg></arg>	<len></len>	<len></len>	CRC8	CRC8
0x55	<order></order>	(lo byte)	(hi byte)	(lo byte)	(hi byte)	(Data)	(Header)
85 (dec)	3	0	0	0	0	170	142
		ARO	G=0	IFI	V=0		

DATA FRAME Sensor → PC

Byte0 Header	Byte1 Header	Byte2 Header	Byte3 Header	Byte4 Header	Byte5 Header	Byte6 Header	Byte7 Header
0x55	<order></order>	<arg> (lo byte)</arg>	<arg> (hi byte)</arg>	<len> (lo byte)</len>	<len> (hi byte)</len>	CRC8 (Data)	CRC8 (Header)
85 (dec)	3	0	0	0	0	170	142
		AR	G=0	LEN	V=0		

Example order=4: Load parameter from EEPROM to RAM of the sensor.

DATA FRAME PC → Sensor

Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7
Header	Header	Header	Header	Header	Header	Header	Header
0x55	<order></order>	<arg> (lo byte)</arg>	<arg> (hi byte)</arg>	<len> (lo byte)</len>	<len> (hi byte)</len>	CRC8 (Data)	CRC8 (Header)
85 (dec)	4	0	0	0	0	170	11
		AR	G=0	LEI	N=0		

DATA FRAME Sensor → PC

I	Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7
	Header	Header	Header	Header	Header	Header	Header	Header
ſ	OvEE	.ordor	<arg></arg>	<arg></arg>	<len></len>	<len></len>	CRC8	CRC8
	0x55	<order></order>	(lo byte)	(hi byte)	(lo byte)	(hi byte)	(Data)	(Header)
ĺ	85 (dec)	4	0	0	0	0	170	11
			AR	G=0	LEN	V=0		

Example order=5: Read CONNECTION OK from sensor.

DATA FRAME PC → Sensor

Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7
Header	Header	Header	Header	Header	Header	Header	Header
0x55	<order></order>	<arg></arg>	<arg></arg>	<len></len>	<len></len>	CRC8	CRC8
0,000	<ur>corder></ur>	(lo byte)	(hi byte)	(lo byte)	(hi byte)	(Data)	(Header)
85 (dec)	5	0	0	0	0	170	60
		AR	G=0	LEI	V=0		

DATA FRAME Sensor → PC ARG determines the serial number of the sensor

Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7
Header	Header	Header	Header	Header	Header	Header	Header
0x55	<order></order>	<arg></arg>	<arg></arg>	<len></len>	<len></len>	CRC8	CRC8
0,00	Coluel>	(lo byte)	(hi byte)	(lo byte)	(hi byte)	(Data)	(Header)
85 (dec)	5	170	0	0	0	170	178
		ARG	=170	LEN	V=0		

Example order=7: Read Firmware String from sensor

DATA FRAME PC → Sensor

	Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7
	Header	Header	Header	Header	Header	Header	Header	Header
Ī	0x55	.ordor	<arg></arg>	<arg></arg>	<len></len>	<len></len>	CRC8	CRC8
	UXSS	<order></order>	(lo byte)	(hi byte)	(lo byte)	(hi byte)	(Data)	(Header)
Ī	85 (dec)	7	0	0	0	0	170	82
			AR	G=0	LEN	V=0		

DATA FRAME Sensor → PC

ARG determines the firmware number of the sensor

Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8	Byte9	Byte10	Byte11
Header	Header	Header	Header	Header	Header	Header	Header	Data	Data	Data	Data
0x55	<order></order>	<arg></arg>	<arg></arg>	<len></len>	<len></len>	CRC8	CRC8	ASCII	ASCII	ASCII	ASCII
0,555	<ur>corder></ur>	(lo byte)	(hi byte)	(lo byte)	(hi byte)	(Data)	(Header)	ASCII	ASCII	ASCII	ASCII
85 (dec)	7	0	0	72	0	183	38	F	I	R	М
		AR	G=0	LEN	l=72						
						=					
Byte12	Byte13	Byte14	Byte15	Byte16	Byte17	Byte18	Byte19	Byte20	Byte21	Byte22	Byte23
Data	Data	Data	Data	Data	Data	Data	Data	Data	Data	Data	Data
ASCII	ASCII	ASCII	ASCII	ASCII	ASCII	ASCII	ASCII	ASCII	ASCII	ASCII	ASCII
W	Α	R	E		S	Т	R	ı	N	G	
		•		•		•			•		
Byte24	Byte25	Byte26	Byte27	Byte28	Byte29	Byte30	Byte31	Byte32	Byte33	Byte34	Byte35
Ďata	Ďata	Ďata	Ďata	Ďata	Ďata	Ďata	Ďata	Ďata	Ďata	Ďata	Ďata
ASCII	ASCII	ASCII	ASCII	ASCII	ASCII	ASCII	ASCII	ASCII	ASCII	ASCII	ASCII
											R
			•							•	
Byte36	Byte37	Byte38	Byte39	Byte40	Byte41	Byte42	Byte43	Byte44	Byte45	Byte46	Byte47
Ďata	Ďata	Ďata	Ďata	Ďata	Ďata	Ďata	Ďata	Ďata	Ďata	Ďata	Ďata
ASCII	ASCII	ASCII	ASCII	ASCII	ASCII	ASCII	ASCII	ASCII	ASCII	ASCII	ASCII
Т	:	K	W	х	х	/	х	х			
-											
Byte48	Byte49	Byte50	Byte51	Byte52	Byte53	Byte54	Byte55	Byte56	Byte57	Byte58	Byte59
Ďata	Data	Ďata	Ďata	Data	Ďata	Ďata	Ďata	Data	Data	Ďata	Data
ASCII	ASCII	ASCII	ASCII	ASCII	ASCII	ASCII	ASCII	ASCII	ASCII	ASCII	ASCII
		•		•	•	•			•		•
Byte60	Byte61	Byte62	Byte63	Byte64	Byte65	Byte66	Byte67	Byte68	Byte69	Byte70	Byte71
Ďata	Ďata	Ďata	Ďata	Ďata	Ďata	Ďata	Ďata	Ďata	Ďata	Ďata	Ďata
ASCII	ASCII	ASCII	ASCII	ASCII	ASCII	ASCII	ASCII	ASCII	ASCII	ASCII	ASCII
•	•		•		•					•	•
Byte72	Byte73	Byte74	Byte75	Byte76	Byte77	Byte78	Byte79	Byte80	Byte81		
Ďata	Ďata	Ďata	Data	Ďata	Ďata	Ďata	Ďata	Ďata	Ďata		
ASCII	ASCII	ASCII	ASCII	ASCII	ASCII	ASCII	ASCII	ASCII	ASCII	1	
										1	
										-	

Example order=8: Read data values from sensor.

DATA FRAME PC → Sensor

Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7
Header	Header	Header	Header	Header	Header	Header	Header
0x55	<order></order>	<arg> (lo byte)</arg>	<arg> (hi byte)</arg>	<len> (lo byte)</len>	<len> (hi byte)</len>	CRC8 (Data)	CRC8 (Header)
85 (dec)	8	0	0	0	0	170	118
		ARG=0		LEN	N=0		

DATA FRAME Sensor → PC

8 Header Bytes and all **DATA VALUES** (See Table DATA VALUE)

Example order=108: Read 3 data values from sensor.

DATA FRAME PC → Sensor

Byte0 Header	Byte1 Header	Byte2 Header	Byte3 Header	Byte4 Header	Byte5 Header	Byte6 Header	Byte7 Header
0x55	<order></order>	<arg> (lo byte)</arg>	<arg> (hi byte)</arg>	<len> (lo byte)</len>	<len> (hi byte)</len>	CRC8 (Data)	CRC8 (Header)
85 (dec)	108	0	0	0	0	170	105
		AR	G=0	LEI	V=0		

DATA FRAME Sensor → PC

8 Header Bytes and 3 DATA VALUES (DatVal1, DatVal2, DatVal3. See Table DATA VALUE)

Example order=30: Start and Stop triggered sending of data frames

Start triggered sending of data frames

DATA FRAME PC → Sensor

<ARG> determines which data should be send when Trigger goes HI

ARG = 1 --> The HEADER and all DATA VALUES will be send

ARG = 2 --> The HEADER and only the color space coordinates CSX, CSY, CSY will be send

Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7
Header	Header	Header	Header	Header	Header	Header	Header
0x55	<order></order>	<arg> (lo byte)</arg>	<arg> (hi byte)</arg>	<len> (lo byte)</len>	<len> (hi byte)</len>	CRC8 (Data)	CRC8 (Header)
85 (dec)	30	1	0	0	0	170	82
		AR	G=1	LEI	V=0		

DATA FRAME Sensor → PC

I	Bvte0	Byte1	Byte2	Bvte3	Bvte4	Bvte5	Bvte6	Bvte7
	Header	Header	Header	Header	Header	Header	Header	Header
ſ	OvEE	.ordor	<arg></arg>	<arg></arg>	<len></len>	<len></len>	CRC8	CRC8
	0x55	<order></order>	(lo byte)	(hi byte)	(lo byte)	(hi byte)	(Data)	(Header)
ſ	85 (dec)	30	1	0	0	0	170	82
			AR	G=1	LEI	V=0		

Stop triggered sending of data frames DATA FRAME PC → Sensor ARG = 0 --> stops triggered sending.

Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7
Header	Header	Header	Header	Header	Header	Header	Header
0x55	<order></order>	<arg> (lo byte)</arg>	<arg> (hi byte)</arg>	<len> (lo byte)</len>	<len> (hi byte)</len>	CRC8 (Data)	CRC8 (Header)
85 (dec)	30	0	0	0	0	170	159
		ARO	G=0	IFI	V=0		

DATA FRAME Sensor → PC

Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7
Header	Header	Header	Header	Header	Header	Header	Header
OvEE	.ordor	<arg></arg>	<arg></arg>	<len></len>	<len></len>	CRC8	CRC8
0x55	<order></order>	(lo byte)	(hi byte)	(lo byte)	(hi byte)	(Data)	(Header)
85 (dec)	30	0	0	0	0	170	159
		ARO	G=0	IFI	V=0		

Example order=105: Get cycle time from sensor

DATA FRAME PC → Sensor

Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7
Header	Header	Header	Header	Header	Header	Header	Header
0x55	<order></order>	<arg> (lo byte)</arg>	<arg> (hi byte)</arg>	<len> (lo byte)</len>	<len> (hi byte)</len>	CRC8 (Data)	CRC8 (Header)
85 (dec)	105	0	0	0	0	170	130
		AR	G=0	LEN	V=0		

DATA FRAME Sensor → PC

Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8	Byte9	Byte10	Byte11
Header	Header	Header	Header	Header	Header	Header	Header	Data	Data	Data	Data
0x55	<order></order>	<arg></arg>	<arg></arg>	<len></len>	<len></len>	CRC8	CRC8	lo word	lo word	hi word	hi word
0,555	Coluel>	(lo byte)	(hi byte)	(lo byte)	(hi byte)	(Data)	(Header)	lo byte	hi byte	lo byte	hi byte
85 (dec)	105	0	0	8	0	206	163	40	28	2	0
		ARG=0 LEN		l= 8			(CYCLE COU	NT = 13828	0	

Byte12	Byte13	Byte14	Byte15				
Data	Data	Data	Data				
lo word	lo word	hi word	hi word				
lo byte	hi byte	lo byte	hi byte				
144	1	0	0				
COUNTER TIME = 400							

Cycle Time [Hz] = CYCLE COUNT / (COUNTER TIME * 0,01)

Cycle Time [ms] = (COUNTER TIME * 0,01) / CYCLE COUNT

Example order=190: Write new baud rate to the sensor.

DATA FRAME PC → Sensor

Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7
Header	Header	Header	Header	Header	Header	Header	Header
0	.ordor	<arg></arg>	<arg></arg>	<len></len>	<len></len>	CRC8	CRC8
0x55	<order></order>	(lo byte)	(hi byte)	(lo byte)	(hi byte)	(Data)	(Header)
85 (dec)	190	1	0	0	0	170	14
		ARG=1		LEI	V=0		

New baud rate is determined by argument.

ARG=0: baud rate = 9600 ARG=1: baud rate = 19200 ARG=2: baud rate = 38400 ARG=3: baud rate = 57600 ARG=4: baud rate = 115200 ARG=5: baud rate = 230400 ARG=6: baud rate = 460800

DATA FRAME Sensor → PC

Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7
Header	Header	Header	Header	Header	Header	Header	Header
0x55	<order></order>	<arg> (lo byte)</arg>	<arg> (hi byte)</arg>	<len> (lo byte)</len>	<len> (hi byte)</len>	CRC8 (Data)	CRC8 (Header)
85 (dec)	190	0	0	0	0	170	195
		ARG=0		LEN=0			

A. Firmwareupdate über Software Firmware Loader

A.1 Bedienungsanleitung Software Firmware Loader V1.1

Die vorliegende Bedienungsanleitung dient zur Installation der PC-Software für den Firmware Loader. Zur Unterstützung der Inbetriebnahme des Firmware Loader werden in dieser Bedienungsanleitung die einzelnen Funktionselemente der graphischen Windows®-Benutzeroberfläche erklärt.

Die Software ermöglicht es dem Anwender, ein automatisches Firmwareupdate durchzuführen. Das Update wird dabei über die RS232 Schnittstelle durchgeführt.

Zum Firmwareupdate werden ein Initialisierungsfile (xxx.ini) sowie ein Firmwarefile (xxx.elf.S) benötigt. Diese Files sind vom Lieferanten erhältlich. In manchen Fällen wird ein zusätzliches Firmwarefile für den Programmspeicher (xxx.elf.p.S) benötigt, dieses File wird dann automatisch mit den beiden anderen Dateien zur Verfügung gestellt.

Wichtig! Für das Firmwareupdate ist es unbedingt erforderlich, dass alle zwei oder drei Files in dem gleichen Ordner hinterlegt sind.

Nachdem das Initialisierungsfile über den Firmware Loader geladen wurde, erfolgt ein Plausibilitätstest. Wenn das Initialisierungsfile verändert worden ist oder beschädigt wurde, ist ein Firmwareupdate nicht möglich.

Nach erfolgreichem Plausibilitätstest werden die Anweisungen, die im Initialisierungsfile hinterlegt worden sind, schrittweise durchgeführt.

Bei einem Firmwareupdate wird der komplette Mikrokontroller im Sensor gelöscht. D.h. dass sowohl das Programm im Programmspeicher als auch die Daten im Datenspeicher verloren gehen.

Der Programmspeicher wird durch die neue Firmware automatisch wieder richtig beschrieben.

Die im Datenspeicher (EEPROM) abgespeicherten Parametereinstellungen, Temperaturkurven, Linearisierungs-kurven etc. werden jedoch gelöscht.

Mit dem Firmware Loader V1.1 werden die Daten im EEPROM gesichert, um sie nach einem erfolgreichen Firmware Update wieder aufzuspielen.

Dazu wird ein EEPROM Backup File erzeugt.

A.2 Installation der Software Firmware Loader V1.1

Für eine erfolgreiche Installation der Firmware Loader Software müssen folgende Hardware-Voraussetzungen erfüllt sein:

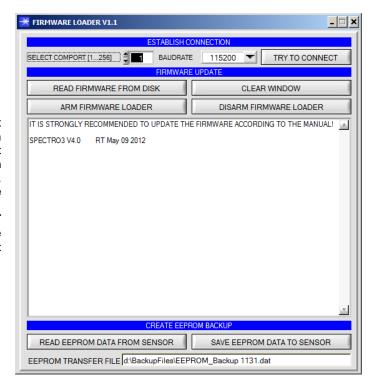
- Microsoft® Windows® 7, 8, 10
- IBM PC AT oder kompatibler
- VGA-Grafik
- Microsoft®-kompatible Maus
- Serielle RS232-Schnittstelle am PC oder USB Slot oder RJ45 Buchse
- Kabel cab-las4/PC (cab-las5/PC) für die RS232-Schnittstelle oder cab-4/USB (cab-5/USB) für den USB Slot oder cab-4/ETH (cab-5/ETH) für die RJ45 Buchse

Installieren Sie nun die Software wie im Folgenden beschrieben:

- Sie k\u00f6nnen die Software direkt von der Installations-DVD installieren. Auf der DVD befindet sich der Ordner SOFTWARE. Im Ordner SOFTWARE ist eine SETUP Anwendung. Zum Installieren der Software m\u00fcssen Sie diese SETUP-Anwendung starten.
- Das Installationsprogramm meldet sich mit einem Dialogfeld und schlägt vor, die Software im Verzeichnis C: "DATEINAME" auf der Festplatte einzurichten.
 Akzeptieren Sie den Vorschlag mit OK oder [ENTER] oder ändern Sie die Pfad-Vorgaben nach Ihren Wünschen.
- 3. Während der Installation wird eine neue Programm-Gruppe für die Software im Windows Programm-Manager erzeugt. Außerdem wird in der erzeugten Programmgruppe ein Icon für den Start der Software automatisch generiert. Falls die Installation erfolgreich durchgeführt werden konnte, meldet sich das Installationsprogramm mit einer Dialogbox "Setup OK".
- 4. Nach erfolgreicher Installation kann die Software durch Doppelklick auf das Icon mit der linken Maustaste gestartet werden.

Windows® ist ein eingetragenes Warenzeichen der Microsoft Corp.

VGA™ ist ein Warenzeichen der International Business Machines Corp.


Bitte lesen Sie diesen Abschnitt unbedingt zuerst durch, bevor Sie beginnen. Im Beispiel wird ein Softwareupdate von SPECTRO3 V4.0 auf SPECTRO3 V4.1 durchgeführt.

Schritt 1:

Nach dem Aufruf der Firmware Loader Software erscheint nebenstehendes Fenster auf der Windows® Oberfläche.

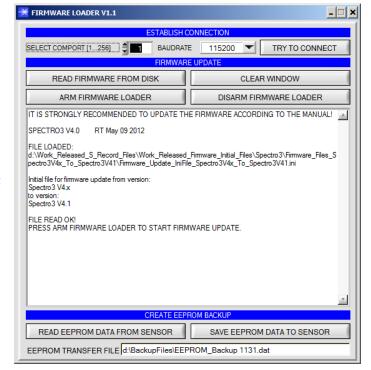
Die Software versucht sofort nach dem Start eine Verbindung zum angeschlossenen Sensor herzustellen. Sollte der Sensor nicht an COM PORT 1 angeschlossen sein, wählen Sie den entsprechenden COM PORT aus. Beachten Sie auch, dass die richtige BAUDRATE eingestellt ist.

Versuchen Sie jetzt, über TRY TO CONNECT eine Verbindung aufzubauen. Nachdem die Verbindung steht, meldet sich der Sensor mit der momentan aufgespielten Firmware.

Schritt 2:

Drücken Sie den Button **READ FIRMWARE FROM DISK** und laden das File **xxx.ini**.

Das geladene Initialisierungsfile wird im Statusfenster angezeigt.


Wie oben beschrieben, wird zuerst ein Plausibilitätstest des Initialisierungsfiles durchgeführt.

Wenn das File in Ordnung ist, kommt die Meldung:

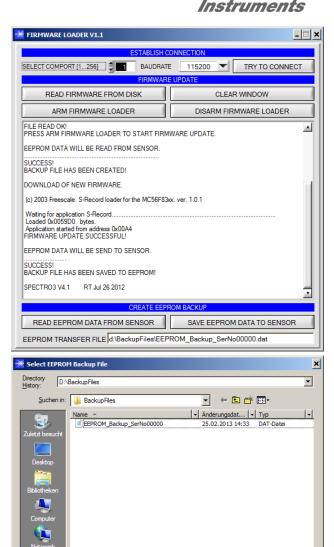
File read OK!

Press **ARM FIRMWARE LOADER** to start firmware update.

Bitte beachten Sie den Kommentar, der im Anzeigefenster erscheint. Mit Hilfe des Kommentars können Sie sicherstellen, dass Sie das richtige Initialisierungsfile geladen haben.

Schritt 3:

Drücken Sie jetzt den Button ARM FIRMWARE LOADER. Das Programm versucht nun einen Softwarebefehl abzusetzen, welcher den normalen unterbricht Programmlauf und zur Startadresse des Bootsektors springt. War dies erfolgreich, meldet sich der Sensor mit der Aufforderung, das S-Record File in den Sensor zu laden.


Das Firmwareupdate läuft nach Drücken von ARM FIRMWARE LOADER voll automatisch.

Zwischendurch werden Sie nur aufgefordert, einen Namen für das EEPROM Backup File einzugeben. Sollte das Firmwareupdate bis zum Auslesen der EEPROM Daten problemlos laufen, danach aber aus irgendwelchen Gründen schief gehen, kann das EEPROM Backup File jederzeit über SAVE EEPROM DATA TO SENSOR aufgespielt werden.

Den Dateinamen für Ihr **EEPROM Backup File** sollten Sie so wählen, dass es bei mehreren Sensoren nicht zu einer Verwechslung kommen kann. Ratsam wäre ein Dateiname, der die Seriennummer des Sensors enthält. Es spricht auch nichts dagegen, sich diese Datei für zukünftige Updates zu sichern.

Nach erfolgreichem Update meldet sich der Sensor mit der Statuszeile der neuen Firmware.

Das gesamte Update kann bis zu 1 Minute dauern.

EEPROM Backup SerNo00000

(*.dat)

Dateityp

<u>0</u>K

▾

Sollte wider Erwarten beim Update des Programmspeichers etwas schief gegangen sein, haben Sie immer noch die Möglichkeit ein Update durchzuführen, auch wenn der Sensor "abgeschossen" wurde.

Stellen Sie sicher, dass Sie den richtigen COM PORT ausgewählt haben und die richtige BAUDRATE.

Nach **TRY TO CONNECT** werden Sie keine Verbindung erhalten.

Laden Sie das entsprechende **xxx.ini** File von der Festplatte.

Drücken Sie ARM FIRMWARE LOADER.

Das Programm versucht den Softwarebefehl zum Update abzusetzen. Dies funktioniert jedoch nicht und Sie erhalten die Meldung CONNECTION FAILURE.

Der Firmware Loader ist aber jetzt für 30 Sekunden "scharf".

Wenn Sie innerhalb der 30 Sekunden einen Hardware Reset durchführen, wird das Firmwareupdate automatisch durchgeführt.

Nach erfolgreichem Update meldet sich der Sensor mit der Statuszeile der neuen Firmware.

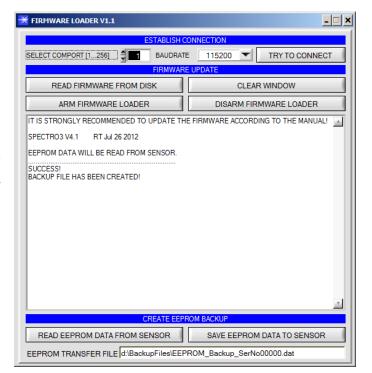
Das gesamte Update kann bis zu 1 Minute dauern.

💥 FIRMWARE LOADER V1.1 _ |□ | × | SELECT COMPORT [1...256] TRY TO CONNECT BAUDRATE 115200 READ FIRMWARE FROM DISK CLEAR WINDOW ARM FIRMWARE LOADER DISARM FIRMWARE LOADER ٨ FILE READ OK! PRESS ARM FIRMWARE LOADER TO START FIRMWARE UPDATE. DOWNLOAD OF NEW FIRMWARE.TIMEOUT! NO HEADER DATA RECEIVED!
COMMUNICATION ERROR!
CHECK POWER SUPPLY AND COM SETTINGS. TO CONNECT AGAIN! CONNECTION FAILURE WAITING FOR HARDWARE RESET (c) 2003 Freescale. S-Record loader for the MC56F83xx. ver. 1.0.1 Waiting for application S-Record. Loaded 0x0059D0 bytes. Application started from address 0x00A4 FIRMWARE UPDATE SUCCESSFUL! SPECTRO3 V4.1 RT Jul 26 2012 READ EEPROM DATA FROM SENSOR SAVE EEPROM DATA TO SENSOR EEPROM TRANSFER FILE d:\BackupFiles\EEPROM_Backup_SerNo00000.dat

INFO! Sollte der Sensor "abgeschossen" worden sein, dann arbeitet der Sensor mit einer Baudrate von 115200.

Sie können jederzeit ein EEPROM Backupfile erzeugen, um es auf Ihrer Festplatte zu archivieren.

Drücken Sie dazu **READ EEPROM DATA FROM SENSOR.** Sie werden aufgefordert ein Initialisierungsfile zu wählen, falls noch keines geladen wurde. Anschließend werden Sie nach einen Dateinamen gefragt. Der gewählte Name wir im Display **EEPROM TRANSFER FILE** angezeigt.

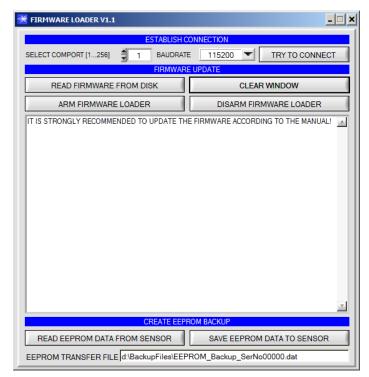

Den Dateinamen für Ihr **EEPROM Backup File** sollten Sie so wählen, dass es bei mehreren Sensoren nicht zu einer Verwechslung kommen kann. Ratsam wäre ein Dateiname der die Seriennummer des Sensors enthält.

Der Firmware Loader liest jetzt die kompletten EEPROM Daten im Datenspeicher aus und speichert diese im selektierten File.

War dies erfolgreich, erscheint die Meldung: Success!

Backup File has been created!

Sollte bei einem Firmwareupdate etwas schief gegangen sein, das **Backup File** jedoch noch erzeugt worden sein, kann das gespeicherte EEPROM **Backup File** über **SAVE EEPROM DATA TO SENSOR** jederzeit in den Sensor geladen werden.



CLEAR WINDOW setzt das Anzeigedisplay zurück.

Mit **DISARM FIRMWARE LOADER** können Sie das Firmwareupdate abbrechen, wenn Sie längere Zeit keine Antwort oder Meldungen in der Statuszeile erhalten.

Warten Sie jedoch ca. 1 Minute, bevor Sie diesen Button drücken.

